You will need to load the core library for the course textbook. We will also be using various random number generation functions in today’s seminar, so it would also be worthwhile setting the seed as shown in the code block below.
library(ISLR)
set.seed(12345)
In this exercise, we will be using the Weekly
dataset, which can be loaded with the following code:
data("Weekly")
This data includes weekly percentage returns for the S&P 500 stock index between 1990 and 2010. To find out more about the variables included in this data, you can look at the help file, which can be accessed using ?Weekly
. We will be interested in predicting the Direction
variable, which indicates whether the S&P 500 went up or down in a given week.
summary()
command to explore the data. In how many weeks did the market move up?summary(Weekly)
## Year Lag1 Lag2 Lag3
## Min. :1990 Min. :-18.1950 Min. :-18.1950 Min. :-18.1950
## 1st Qu.:1995 1st Qu.: -1.1540 1st Qu.: -1.1540 1st Qu.: -1.1580
## Median :2000 Median : 0.2410 Median : 0.2410 Median : 0.2410
## Mean :2000 Mean : 0.1506 Mean : 0.1511 Mean : 0.1472
## 3rd Qu.:2005 3rd Qu.: 1.4050 3rd Qu.: 1.4090 3rd Qu.: 1.4090
## Max. :2010 Max. : 12.0260 Max. : 12.0260 Max. : 12.0260
## Lag4 Lag5 Volume Today
## Min. :-18.1950 Min. :-18.1950 Min. :0.08747 Min. :-18.1950
## 1st Qu.: -1.1580 1st Qu.: -1.1660 1st Qu.:0.33202 1st Qu.: -1.1540
## Median : 0.2380 Median : 0.2340 Median :1.00268 Median : 0.2410
## Mean : 0.1458 Mean : 0.1399 Mean :1.57462 Mean : 0.1499
## 3rd Qu.: 1.4090 3rd Qu.: 1.4050 3rd Qu.:2.05373 3rd Qu.: 1.4050
## Max. : 12.0260 Max. : 12.0260 Max. :9.32821 Max. : 12.0260
## Direction
## Down:484
## Up :605
##
##
##
##
Direction
using Lag1
and Lag2
. Recall that to estimate a logistic regression, you will need to use the glm()
function, with family = binomial
as an argument to that function. Summarise the results. Are either of the two lag variables significant?glm.fit <- glm(Direction ~ Lag1 + Lag2,
data = Weekly,
family = binomial)
summary(glm.fit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2, family = binomial, data = Weekly)
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.623 -1.261 1.001 1.083 1.506
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.22122 0.06147 3.599 0.000319 ***
## Lag1 -0.03872 0.02622 -1.477 0.139672
## Lag2 0.06025 0.02655 2.270 0.023232 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1496.2 on 1088 degrees of freedom
## Residual deviance: 1488.2 on 1086 degrees of freedom
## AIC: 1494.2
##
## Number of Fisher Scoring iterations: 4
predict()
function on the estimated model object, with type = "response"
. This will produce a vector of probabilities which will be larger when an observation is more likely to have moved up rather than down, given its covariate values. For how many observations is the probability of the S&P going up greater than .5?pred_probs <- predict(glm.fit, type = "response")
sum(pred_probs > .5)
## [1] 1013
table(pred_probs > .5)
##
## FALSE TRUE
## 76 1013
The model predicts upward market movement in 1013 out of 1089 observations.
"Up"
if the model predicts upward movement in the stock market and "Down"
if the model predicts downward movement in the stock market (i.e. use the vector of probabilities you created in part (c) and code which observations are greater than .5). Use this new variable to construct a confusion matrix with the original outcome variable, Direction
. How many false positives are there? How many false negatives are there? What is the training set error rate?N.b. Remember that, in the context of classification problems, such as the one considered here, the error rate is \(\frac{1}{n}\sum_{i=1}^N Err_i\). That is, for each observation, we predict the outcome and compare it to the observed outcome for that observation. If the predicted outcome is different from the actual outcome, then \(Err_i = 1\), otherwise it is equal to 0. The error-rate is then just the average of those errors across all observations.
pred_outcome <- ifelse(pred_probs > .5,"Up", "Down")
table(pred_outcome, Weekly$Direction)
##
## pred_outcome Down Up
## Down 38 38
## Up 446 567
mean(pred_outcome != Weekly$Direction)
## [1] 0.4444444
There are 446 false positives and 38 false negatives. The training set error rate is 44%
cv.glm()
function can be used in order to compute the LOOCV test error estimate. Alternatively, one can compute those quantities using just the glm()
and predict()
functions, and a for
loop. Although it can be more laborious to do this using a loop, it also helps to clarify what is going on in this process!Start by re-fitting the logistic regression model that you fit in answer to part (b) (predicting Direction
using Lag1
and Lag2
), but here use all observations except the first observation. Remember, you can subset a data.frame
by using the square brackets. So, here, you will want something like my_data[-1,]
. How do the coefficients you estimate in this model differ from those in the model in part (b)?
glm.fit <- glm(Direction ~ Lag1 + Lag2,
data = Weekly[-1,],
family = binomial)
summary(glm.fit)
##
## Call:
## glm(formula = Direction ~ Lag1 + Lag2, family = binomial, data = Weekly[-1,
## ])
##
## Deviance Residuals:
## Min 1Q Median 3Q Max
## -1.6258 -1.2617 0.9999 1.0819 1.5071
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) 0.22324 0.06150 3.630 0.000283 ***
## Lag1 -0.03843 0.02622 -1.466 0.142683
## Lag2 0.06085 0.02656 2.291 0.021971 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 1494.6 on 1087 degrees of freedom
## Residual deviance: 1486.5 on 1085 degrees of freedom
## AIC: 1492.5
##
## Number of Fisher Scoring iterations: 4
They are almost identical, because you are using exactly the same model and the same data except for the omission of the first observation!
P(Direction="Up"|Lag1, Lag2) > 0.5
. Remember that to calculate predicted probabilities (rather than predicted log-odds) you will need to add type = "response"
as an argument to the predict()
function. Compare your prediction to the true value of Direction
for the first observation. Was this observation correctly classified?predict(glm.fit, Weekly[1,], type="response") > 0.5
## 1
## TRUE
Weekly[1,]$Direction
## [1] Down
## Levels: Down Up
Prediction was UP, true Direction was DOWN.
To estimate the LOOCV error, we need to now replicate the process you followed above for every observation in the dataset. Fortunately, rather than writing hundreds of lines of code, we can accomplish this using a for
loop. Write a for
loop that loops over from i=1
to i=n
, where n is the number of observations in the data set (i.e. you could use nrow(Weekly)
). At each iteration, your loop should performs each of the following steps:
Direction
using Lag1
and Lag2
(i.e. as in your answer to (e) above).The code provided below can be used to help with this question:
# Set up a vector in which you can store the errors for each observation
errors <- rep(0, nrow(Weekly))
# Loop over each observation in the data
for (i in 1:nrow(Weekly)) {
# Fit the logistic regression model
## YOUR CODE GOES HERE
# Calculate the predicted probability, and check whether this is greater than .5
## YOUR CODE GOES HERE
# Calculate the true outcome for the i-th observation
## YOUR CODE GOES HERE
# Assign the errors vector to be equal to 1 if a prediction error was made (the vector is all 0s otherwise)
## YOUR CODE GOES HERE
}
# Count up the number of errors made
# Set up a vector in which you can store the errors for each observation
errors <- rep(0, nrow(Weekly))
# Loop over each observation in the data
for (i in 1:nrow(Weekly)) {
# Fit the logistic regression model
glm.fit <- glm(Direction ~ Lag1 + Lag2,
data = Weekly[-i,],
family = binomial)
# Calculate the predicted probability, and check whether this is greater than .5
is_up <- predict(glm.fit, Weekly[i,], type="response") > 0.5
# Calculate the true outcome for the i-th observation
is_true_up <- Weekly[i,]$Direction == "Up"
# Assign the errors vector to be equal to 1 if a prediction error was made (the vector is all 0s otherwise)
if (is_up != is_true_up) errors[i] <- 1
}
# Count up the number of errors made
sum(errors)
## [1] 490
There are 490 errors.
n
numbers obtained from the loop above in order to calculate the LOOCV estimate for the test error. Comment on the results. How does this compare to the estimate of the training set error calculated in part (d)?mean(errors)
## [1] 0.4499541
The LOOCV estimates a test error rate of 45%. This is very similar to the training set error rate we calculated in part (d), though that will not always be the case.
Running the leave-one-out procedure here does not take too long because the Weekly
dataset has only nrow(Weekly)
observations, and this is a simple logistic regression model. However, often LOOCV is too computationally burdensome to be useful. In those cases, K-fold cross-validation is normally used instead. Though it is possible to code cross-validation manually, using only the functions we used above, in this case it will suffice to use some functions designed for the purpose.
install.packages("boot")
first):library(boot)
glm_fit <- glm(Direction ~ Lag1 + Lag2, data = Weekly, family = binomial)
cv.glm()
function from the boot package to estimate the cross-validation error. Look at the help file for this function and you will see that you need to provide 4 arguments to make the function work. i) the data for estimating the model; ii) the estimated model object from part (b) above; iii) a “cost” function, which we have copied for you below (this just tells the function that you want to do cross-validation for a logit model); and finally, iv) a value for K
, the number of folds to use. Use this function to implement 10-fold cross validation and report the cross-validation error (this information is stored in the first element of delta
component of the estimated model object). How does this estimate compare to the LOOCV reported in the question above?cost <- function(r, pi) mean(abs(r-pi)> 0.5)
cv_10_fold_logistic <- cv.glm(Weekly, glm_fit, K= 10, cost = cost)
cv_error_10_fold_logistic <- cv_10_fold_logistic$delta[1]
cv_error_10_fold_logistic
## [1] 0.4536272
The answer is almost exactly the same as the LOOCV, but the function takes less time to complete than the for loop did!
K
in the cv.glm
function. How does this affect the cross-validation error?cv_5_fold_logistic <- cv.glm(Weekly, glm_fit, K= 5, cost = cost)
cv_error_5_fold_logistic <- cv_5_fold_logistic$delta[1]
cv_error_5_fold_logistic
## [1] 0.4481175
cv_20_fold_logistic <- cv.glm(Weekly, glm_fit, K= 20, cost = cost)
cv_20_fold_logistic <- cv_20_fold_logistic$delta[1]
cv_20_fold_logistic
## [1] 0.446281
The results are essentially entirely insensitive to these choices. Usually the choice of K is determined by how long the model takes to estimate - if you have a very long-running model, then a lower value for K is normally practical.
In this exercise, we will predict the number of applications (Apps
) received by US colleges using the other variables in the College
data set. Again, if you would like to read more about the variables in the data, just type ?College
.
Apps
as the outcome, and all other variables in the data as predictors. Report the estimated coefficients from the model.lm.fit <- lm(Apps ~ . , data = College)
coef(lm.fit)
## (Intercept) PrivateYes Accept Enroll Top10perc
## -445.08412616 -494.14896913 1.58580720 -0.88069035 49.92627615
## Top25perc F.Undergrad P.Undergrad Outstate Room.Board
## -14.23447911 0.05739022 0.04444654 -0.08587004 0.15102708
## Books Personal PhD Terminal S.F.Ratio
## 0.02089712 0.03110491 -8.67849712 -3.33065614 15.38960682
## perc.alumni Expend Grad.Rate
## 0.17866507 0.07789731 8.66762545
College
data. To get you started, the code below creates a matrix of predictors using the model.matrix()
function, which makes working with glmnet()
a little more straightforward.library(glmnet) # Load the relevent package for estimating ridge and lasso regressions
## Loading required package: Matrix
## Loaded glmnet 4.0-2
train.mat <- model.matrix(Apps ~ . , data = College)[,-1]
To estimate the ridge regression, you will need to use the glmnet
function from the library(glmnet)
package. This function takes four main arguments:
x
- a matrix of predictor variablesy
- a vector of outcomesalpha
- a parameter determining whether you want to run a ridge regression (alpha = 0
) or a lasso regression (alpha = 1
)lambda
- the penalty parameter applied to the ridge regressionFor the purposes of this exercise, use train.mat
for x
, and the outcome from the College
data for y
. Set alpha = 1
and lambda = 1000
(a very large penalty parameter). Report the coefficients (coef()
) estimated by this model. How do they compare to the coefficients that you estimated using OLS in part (b) above?
ridge_mod <- glmnet(train.mat, College$Apps, alpha = 0, lambda = 1000)
coef(ridge_mod)
## 18 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) -1.983738e+03
## PrivateYes -5.498690e+02
## Accept 7.233613e-01
## Enroll 7.172059e-01
## Top10perc 1.825737e+01
## Top25perc 5.311974e+00
## F.Undergrad 1.142266e-01
## P.Undergrad 4.288358e-02
## Outstate 8.359463e-04
## Room.Board 1.994826e-01
## Books 2.177900e-01
## Personal -2.429920e-03
## PhD -5.943560e-01
## Terminal -2.261802e+00
## S.F.Ratio 1.126691e+01
## perc.alumni -1.052872e+01
## Expend 6.608624e-02
## Grad.Rate 1.188523e+01
## Presenting these nicely next to the OLS estimates
round(data.frame(ols = coef(lm.fit), ridge = as.numeric(coef(ridge_mod))),2)
## ols ridge
## (Intercept) -445.08 -1983.74
## PrivateYes -494.15 -549.87
## Accept 1.59 0.72
## Enroll -0.88 0.72
## Top10perc 49.93 18.26
## Top25perc -14.23 5.31
## F.Undergrad 0.06 0.11
## P.Undergrad 0.04 0.04
## Outstate -0.09 0.00
## Room.Board 0.15 0.20
## Books 0.02 0.22
## Personal 0.03 0.00
## PhD -8.68 -0.59
## Terminal -3.33 -2.26
## S.F.Ratio 15.39 11.27
## perc.alumni 0.18 -10.53
## Expend 0.08 0.07
## Grad.Rate 8.67 11.89
As expected, the ridge regression shrinks the size of almost all the coefficients relative to OLS.
lambda
parameter. How does this affect the estimated coefficients? What happens when lambda = 0
?ridge_mod <- glmnet(train.mat, College$Apps, alpha = 0, lambda = 100)
round(data.frame(ols = coef(lm.fit), ridge = as.numeric(coef(ridge_mod))),2)
## ols ridge
## (Intercept) -445.08 -914.82
## PrivateYes -494.15 -514.20
## Accept 1.59 1.32
## Enroll -0.88 -0.12
## Top10perc 49.93 37.83
## Top25perc -14.23 -6.65
## F.Undergrad 0.06 0.04
## P.Undergrad 0.04 0.03
## Outstate -0.09 -0.06
## Room.Board 0.15 0.18
## Books 0.02 0.06
## Personal 0.03 0.01
## PhD -8.68 -6.76
## Terminal -3.33 -4.55
## S.F.Ratio 15.39 14.93
## perc.alumni 0.18 -4.19
## Expend 0.08 0.08
## Grad.Rate 8.67 9.79
ridge_mod <- glmnet(train.mat, College$Apps, alpha = 0, lambda = 0)
round(data.frame(ols = coef(lm.fit), ridge = as.numeric(coef(ridge_mod))),2)
## ols ridge
## (Intercept) -445.08 -450.43
## PrivateYes -494.15 -494.51
## Accept 1.59 1.58
## Enroll -0.88 -0.86
## Top10perc 49.93 49.81
## Top25perc -14.23 -14.15
## F.Undergrad 0.06 0.06
## P.Undergrad 0.04 0.04
## Outstate -0.09 -0.09
## Room.Board 0.15 0.15
## Books 0.02 0.02
## Personal 0.03 0.03
## PhD -8.68 -8.68
## Terminal -3.33 -3.33
## S.F.Ratio 15.39 15.41
## perc.alumni 0.18 0.12
## Expend 0.08 0.08
## Grad.Rate 8.67 8.67
As we reduce the value of lambda, the ridge coefficients get closer to the OLS coefficients. At lambda = 0, they are essentially the same (the small differences that are still present are due to small implementation differences between lm()
and glmnet()
).
alpha
parameter to be equal to 1 rather than 0. Try this now, and compare the OLS coefficients to the lasso coefficients when lambda = 10
.lasso_mod <- glmnet(train.mat, College$Apps, alpha = 1, lambda = 20)
coef(lasso_mod)
## 18 x 1 sparse Matrix of class "dgCMatrix"
## s0
## (Intercept) -585.76484088
## PrivateYes -430.96055785
## Accept 1.46383398
## Enroll -0.22858773
## Top10perc 35.00907616
## Top25perc -3.36767932
## F.Undergrad .
## P.Undergrad 0.02373731
## Outstate -0.06033567
## Room.Board 0.12680896
## Books .
## Personal .
## PhD -5.84465314
## Terminal -3.23247018
## S.F.Ratio 5.27541830
## perc.alumni -0.94416051
## Expend 0.07026571
## Grad.Rate 5.41871976
## Presenting these nicely next to the OLS estimates
round(data.frame(ols = coef(lm.fit), lasso = as.numeric(coef(lasso_mod))),2)
## ols lasso
## (Intercept) -445.08 -585.76
## PrivateYes -494.15 -430.96
## Accept 1.59 1.46
## Enroll -0.88 -0.23
## Top10perc 49.93 35.01
## Top25perc -14.23 -3.37
## F.Undergrad 0.06 0.00
## P.Undergrad 0.04 0.02
## Outstate -0.09 -0.06
## Room.Board 0.15 0.13
## Books 0.02 0.00
## Personal 0.03 0.00
## PhD -8.68 -5.84
## Terminal -3.33 -3.23
## S.F.Ratio 15.39 5.28
## perc.alumni 0.18 -0.94
## Expend 0.08 0.07
## Grad.Rate 8.67 5.42
The lasso shrinks the coefficients in a similar way to the ridge regression, but here many of the coefficients are shrunk all the way to zero. This illustrates a key difference between the lasso and ridge approaches.
sample()
function helpful for selecting observations at random to include in the two sets.library(ISLR)
set.seed(11)
train.size <- nrow(College) / 2
train <- sample(1:nrow(College), train.size)
College.train <- College[train, ]
College.test <- College[-train, ]
Apps
) for observation \(i\) and \(\hat{y_i}\) is the fitted value for observation \(i\) from the regression model.lm.fit <- lm(Apps ~ . , data = College.train)
lm.pred <- predict(lm.fit, College.test)
mean((College.test$Apps - lm.pred)^2)
## [1] 1026096
The test-set MSE for the linear model is 1026096
model.matrix()
function, as in part (c) of the previous question, in order for the glmnet()
function to work. Use the predict()
function to calculate fitted values for the test set by setting the newx
argument to be equal to your test data. Report the test set MSE from this regression. How does it compare to the test set error you calculated in part (b)?(For the purposes of this question, set lambda = 0.1
. Or, if you are feeling adventurous, follow the instructions on pages 253-254 of the James et. al. textbook to see how to use cross-validation for the ridge regression!)
train.mat <- model.matrix(Apps ~ . , data = College.train)[,-1]
test.mat <- model.matrix(Apps ~ . , data = College.test)[,-1]
ridge_mod <- glmnet(train.mat, College.train$Apps, alpha = 0, lambda = 0.1)
ridge_pred <- predict(ridge_mod, newx = test.mat)
mean((College.test$Apps - ridge_pred)^2)
## [1] 1024134
The test-set MSE is marginally lower than OLS at 1024134
alpha = 1
in glmnet()
). Again, set lambda = 0.1
. Report the test error obtained. How does this compare to the test set errors for the OLS and ridge models? (Again, further details for implementing the lasso model can be found on page 255 of the textbook.)Pick \(\lambda\) using College.train and report error on College.test.
lasso_mod <- glmnet(train.mat, College.train$Apps, alpha = 1, lambda = 0.1)
lasso_pred <- predict(lasso_mod, newx = test.mat)
mean((College.test$Apps - lasso_pred)^2)
## [1] 1023823
Again, the test-set MSE is very marginally lower than OLS at 1023823