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Roadmap

What have we done so far?

1. Working with data

2. Supervised learning – linear regression

3. Supervised learning – classification

4. Non-linear and tree-based methods

Where are we going?

1. Tools for selecting between models

2. Unsupervised learning

3. Text analysis (next week)
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Motivation

How popular are the UK political parties?

The last few years have seen dramatic changes in UK politics, most of
which has been tracked closely by a variety of political polling
companies. Individual polls are noisy manifestations of underlying trends
in public opinion. We can think of the task of measuring public support
for a given party as a prediction problem, where results in each polls are
data and we want to predict the true average level of support at each
point in time. What is the best model for predicting such trends?
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Splines

library(splines)
spline_mod_3 <- lm(con_lead ~ bs(date, df = 6, degree = 3), data = polls)
spline_mod_5 <- lm(con_lead ~ bs(date, df = 8, degree = 3), data = polls)
spline_mod_8 <- lm(con_lead ~ bs(date, df = 11, degree = 3), data = polls)
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Splines
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Which Wiggle is Best?
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Motivation

Almost all quantitative analyses require the analyst to make modelling
decisions:

• Which variables should I use to predict my outcome?

• Should I use a linear model, or a non-linear model?

• Should I just use 𝑋 in my regression? Or should I also use 𝑋2? (or
𝑋3? or 𝑋4?)

• How many knots should I include in my spline? 2? 3? More?

These decisions can have important consequences for our results, but it is
not always clear how to make them.
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Day 7 Outline

Cross-validation

Bootstrap

Linear Model Selection and Regularization
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Cross-validation



Training Error versus Test error

• We want to build predictive models that are accurate (produce few
errors)

• We typically distinguish between two types of error: training and test
error

• The training error is the average error that results from using a
statistical learning method to predict the response for the
observations used in its training

• The test error is the average error that results from using a
statistical learning method to predict the response on a new
observation, one that was not used in training the method

• Training error rate often is quite different from the test error rate,
and in particular the former can dramatically underestimate the
latter
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Bias-Variance Trade-Off

We can think of the test error associated with any given statistical
estimator as coming from two fundamental quantities:

1. Bias

• The bias of an estimator is the error that is introduced by
approximating a complicated set of relationships with a simple model
that doesn’t characterise the full complexity

2. Variance

• The variance of an estimator is the amount that the predictions
produced by the estimator would change if it had been estimated on
different data

Ideally we would like to minimize both variance and bias, but these goals
are often at odds with each other.
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Training- versus Test-Set Performance
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Training- versus Test-Set Performance

• As we use more flexible models, the variance will increase and the
bias will decrease

• The relative rate of change of these two quantities determines
whether the test error increases or decreases

• As we start to make the model more flexible the bias will tend to
decrease faster than the variance will increase

• After some point, adding more flexibility will decrease the the bias
only a small amount, but the variance will increase a lot

Implication: We need tools which tell us when we have reached the
optimal balance between bias and variance.
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Evaluating Test Error Rates

• Validation set approach: Divide our training data into two parts,
estimate the model on one part and predict for the other.

• Mathematical adjustments to the training error rate in order to
estimate the test error rate (e.g. Cp statistic, AIC and BIC, not
covered here)

• Cross-validation: A class of methods that estimate the test error by
holding out a subset of the training observations from the fitting
process, and then applying the statistical learning method to those
held out observations.
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Validation-set approach

• We randomly divide the available set of samples into two parts: a
training set and a validation or hold-out set.

• The model is fit on the training set, and the fitted model is used to
predict the responses for the observations in the validation set.

• The resulting validation-set error provides an estimate of the test
error. This is typically assessed using MSE in the case of a
quantitative response and misclassification rate for qualitative
response models.
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The Validation process
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A random splitting into two halves: left part is training set, right part is
validation set.
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Example I

• We want to select the 𝑑𝑓 parameter in our spline model for the
polling data

• We randomly divide the polling observations into a training set and
a validation set

• We estimate the model on the training set, once for each value of 𝑑𝑓
• We calculate the MSE for both the observations in the training set

and the validation set
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Example I

set.seed(221186)

train <- sample(1:nrow(polls), nrow(polls)/2)
polls_train <- polls[train,]
polls_test <- polls[-train,]

# Set of values for df parameter
dfs <- 3:100

# Data.frame to store output
out <- data.frame(df = dfs, mse_train = NA, mse_test = NA)
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Example I

for(i in 1:length(dfs)){

mod_out <- lm(con_lead ~ bs(date, df = dfs[i], degree = 3),
data = polls_train) # Estimate model

# Predict for training set
polls_train$fitted_con_lead <- predict(mod_out, newdata = polls_train)

# Predict for test set
polls_test$fitted_con_lead <- predict(mod_out, newdata = polls_test)

# Training MSE
out$mse_train[i] <- mean((polls_train$con_lead - polls_train$fitted_con_lead)^2)

# Test MSE
out$mse_test[i] <- mean((polls_test$con_lead - polls_test$fitted_con_lead)^2)

}

20



Example I
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Why does this happen?

• As we increase the value for 𝑑𝑓 , we are asking the model to fit an
increasingly flexible (wiggly) line to our data

• We can make the line arbitrarily flexible so it fits the training set
data better and better

• But, the wiggly line fit to the training data may capture
idiosyncrasies that are not present in the validation data!

• After a while, increases to 𝑑𝑓 make our predictions for the validation
set worse

22



Why does this happen?
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Drawbacks of validation set approach

• The validation estimate of the test error can be highly variable,
depending on precisely which observations are included in the
training set and which observations are included in the validation set.

• In the validation approach, only a subset of the observations – those
that are included in the training set rather than in the validation set
– are used to fit the model.

• This suggests that the validation set error may tend to overestimate
the test error for the model fit on the entire dataset.
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Variable Estimates of the Test Error
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K-fold Cross-validation

• K-fold cross-validation generalises the idea of the training/validation
approach and is a very popular way of estimating test error.

• Estimates can be used to select best model, and to give an idea of
the test error of the final chosen model.

• Idea is to randomly divide the data into 𝐾 equal-sized parts. We
leave out part 𝑘, fit the model to the other 𝐾 − 1 parts (combined),
and then obtain predictions for the left-out 𝑘th part.

• This is done in turn for each part 𝑘 = 1, 2, … , 𝐾, and then the
results are combined.
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5-fold CV
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Mechanism

• Let the 𝐾 parts be 𝐶1, 𝐶2, … , 𝐶𝐾 , where 𝐶𝐾 denotes the indices of
the observations in part 𝑘. There are 𝑛𝑘 observations in part 𝑘: if 𝑁
is a multiple of 𝐾, then 𝑛𝑘 = 𝑛/𝐾.

• Compute

𝐶𝑉(𝐾) =
𝐾

∑
𝑘=1

𝑛𝑘
𝑛 MSE𝑘

where MSE𝑘 = ∑𝑖∈𝐶𝑘
(𝑦𝑖 − ̂𝑦𝑖)2/𝑛𝑘, and ̂𝑦𝑖 is the fit for

observation 𝑖, obtained from the data with part 𝑘 removed.

• Setting 𝐾 = 𝑛 yields 𝑛-fold or leave-one out cross-validation
(LOOCV).
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LOOCV
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LOOCV

• With OLS, LOOCV can be attractive because there is an analytical
solution which can be calculated from a single fit

• With other methods (logistic regression, GAMs, Random Forests,
etc), LOOCV can still be used but is computationally expensive

• In addition, the estimates from each fold are highly correlated and
hence their average can have high variance.

• A better choice is normally 𝐾 = 5 or 𝐾 = 10.
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K-fold Cross-validation
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K-fold Cross-validation
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Additional issues with CV

• Since each training set is only (𝐾 − 1)/𝐾 as big as the original
training set, the estimates of prediction error will typically be biased
upward.

• This bias is minimized when 𝐾 = 𝑛 (LOOCV), but this estimate has
high variance, as noted earlier.

• 𝐾 = 5 or 10 provides a good balance for this bias-variance tradeoff.
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CV for classification

• We divide the data into 𝐾 roughly equal-sized parts 𝐶1, 𝐶2, … , 𝐶𝐾 .
𝐶𝑘 denotes the indices of the observations in part 𝑘. There are 𝑛𝑘
observations in part 𝑘: if 𝑛 is a multiple of 𝐾, then 𝑛𝑘 = 𝑛/𝐾.

• Compute

𝐶𝑉𝐾 =
𝐾

∑
𝑘=1

𝑛𝑘
𝑛 Errk

where Errk = ∑𝑖∈𝐶𝑘
𝐼(𝑦𝑖 ≠ ̂𝑦𝑖)/𝑛𝑘.
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CV for other models and modelling decisions

Cross-validation is a very general strategy for evaluating predictive fit

• Which variables should I use to predict my outcome?

• Which ones minimize the CV error?

• Should I use a linear model, or a non-linear model?

• Which minimizes the CV error?

• Should I just use 𝑋 in my regression? Or should I also use 𝑋2? (or
𝑋3? or 𝑋4?)

• Which minimizes the CV error?

• How many knots should I include in my spline? 2? 3? More?

• Which minimizes the CV error?
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Which Wiggle is Best?
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Which Wiggle is Best?

Conduct 10-fold cross-validation for the following 12 models:

1. Step function

• 4 steps; 8 steps; 12 steps

2. Polynomials

• Degree = 2; Degree = 10; Degree = 20

3. Cubic Splines

• 4 knots; 8 knots; 12 knots

4. Loess

• span = .5; span = .1; span = .01
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Which Wiggle is Best?

Step function, steps = 4

Polynomial, degree = 2

Step function, steps = 8

Spline, knots = 4

Loess, span = .5

Step function, steps = 12

Polynomial, degree = 10

Spline, knots = 8

Spline, knots = 12

Polynomial, degree = 20

Loess, span = .01

Loess, span = .1
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Which Wiggle is Best?
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Bootstrap



Bootstrap

• The bootstrap is a flexible and powerful statistical tool that can be
used to quantify the uncertainty associated with a given estimator or
statistical learning method.

• E.g., it can provide an estimate of the standard error of a coefficient,
or a confidence interval for that coefficient.
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Where does the name came from?

• The use of the term bootstrap derives from the phrase to pull
oneself up by one’s bootstraps, widely thought to be based on one of
the eighteenth century “The Surprising Adventures of Baron
Munchausen” by Rudolph Erich Raspe:

The Baron had fallen to the bottom of a deep lake. Just when it
looked like all was lost, he thought to pick himself up by his own
bootstraps.
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Intuition

• We usually care about uncertainty around our estimates from a
sample. One way would be to repeatedly sample the population.
But we cannot do that in real world.

• The bootstrap approach allows us to replicate this process of
obtaining new data sets, so that we can estimate the variability of
our estimate without generating additional samples.

• Rather than repeatedly obtaining independent data sets from the
population, we instead obtain distinct data sets by repeatedly
sampling observations from the original data set with replacement.

• Each of these “bootstrap data sets” is created by sampling with
replacement, and is the same size as our original dataset. As a result
some observations may appear more than once in a given bootstrap
data set and some not at all.
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Example with three observations
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• Each bootstrap dataset contains 𝑛 observations, sampled with replacement from the original
data set.

• Each bootstrap data set is used to obtain an estimate of 𝛼.
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Procedure

The bootstrap is commonly used to construct standard errors or related
quantities like confidence intervals. How is this achieved?

• Denoting the first bootstrap dataset by 𝑍∗1, we use 𝑍∗1 to produce
a new bootstrap estimate for 𝛼, which we call ̂𝛼∗1.

• This procedure is repeated 𝐵 times for some large value of 𝐵 (say
1000 or 10,000), in order to produce 𝐵 different bootstrap datasets,
𝑍∗1, 𝑍∗2, … , 𝑍∗𝐵, and 𝐵 corresponding 𝛼 estimates,

̂𝛼∗1, ̂𝛼∗2, … , ̂𝛼∗𝐵.

• We then estimate the standard error of the parameter 𝛼 by
calculating the standard deviation of the bootstrap estimates:

SE𝐵( ̂𝛼) =
√√√
⎷

1
𝐵 − 1

𝐵
∑
𝑟=1

( ̂𝛼∗𝑟 − ̄̂𝛼∗)2

• This serves as an estimate of the standard error of ̂𝛼 estimated from
the original data set.
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What is going on here?

• Recall the definition of a standard error from an intro stats class:
the standard error is the estimate of the standard deviation of the
sampling distribution

• Recall also that the sampling distribution is unobservable! It is the
distribution of estimates of a parameter that would result if we
sampled repeatedly from the population

• The idea behind the bootstrap is to treat our data as the entire
population, and resample from it repeatedly, estimating our
parameter for each sample

• We can then directly calculate the standard deviation of the
bootstrapped estimates to estimate the standard error
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A general picture for the bootstrap

46



Example - bootstrapping a regression standard error

Question: Are YouGov polls more pro-Conservative than those of other
pollsters?

47



Example - bootstrapping a regression standard error
dim(polls)

## [1] 1047 31

table(polls$you_gov)

##
## FALSE TRUE
## 788 259

true_model <- lm(con_lead ~ you_gov, data = polls)
summary(true_model)

...
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.3756 0.2481 9.574 < 2e-16 ***
## you_govTRUE 1.4854 0.4989 2.977 0.00298 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
...
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Example - bootstrapping a regression standard error

• The OLS estimate of the ”yougov” coefficient is 1.4853693

• The OLS standard error on the ”yougov” coefficient is 0.4989103

• Can we replicate this coefficient using a bootstrap procedure?
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Example - bootstrapping a regression standard error

set.seed(221186)
polls_boot <- polls[sample(1:nrow(polls),nrow(polls),replace = TRUE),]
dim(polls_boot)

## [1] 1047 31

boot_model <- lm(con_lead ~ you_gov, data = polls_boot)
coef(boot_model)

## (Intercept) you_govTRUE
## 2.224874 2.185484

• For a single bootstrap estimate, the estimate of the ”yougov”
coefficient is 2.1854842

• This is close to, but not the same as, the OLS estimate

• What happens if we try another bootstrap dataset?
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Example - bootstrapping a regression standard error

polls_boot <- polls[sample(1:nrow(polls),nrow(polls),replace = TRUE),]
boot_model <- lm(con_lead ~ you_gov, data = polls_boot)
coef(boot_model)

## (Intercept) you_govTRUE
## 2.329574 1.148338

• We get a slightly different estimate of the ”yougov” coefficient
(1.1483377)

• This is close to, but not the same as, the OLS estimate

• This is close to, but not the same as, the first bootstrap estimate

• Let’s repeat this process thousands of times
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Example - bootstrapping a regression standard error

boot_func <- function(){
polls_boot <- polls[sample(1:nrow(polls),nrow(polls),replace = TRUE),]
boot_model <- lm(con_lead ~ you_gov, data = polls_boot)
boot_est <- coef(boot_model)[2]
return(boot_est)

}
boot_ests <- replicate(2000, boot_func())

head(boot_ests)

## you_govTRUE you_govTRUE you_govTRUE you_govTRUE you_govTRUE you_govTRUE
## 1.604624 1.255498 1.551409 1.955199 1.222042 1.156817

• We get a slightly different estimates of the ”yougov” coefficient for
each bootstrap sample

• What does the distribution of these samples look like?
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Example - bootstrapping a regression standard error

hist(boot_ests)
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• The estimates from the bootstrap samples are centred close to the
true parameter estimate (1.4853693)

• There is variability across the bootstrap samples
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Example - bootstrapping a regression standard error

How close are our estimates of the regression coefficient and the standard
error from the bootstrap to the original regression model?
mean(boot_ests)

## [1] 1.480512

sd(boot_ests)

## [1] 0.4921922

coef(summary(true_model))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.375635 0.2481413 9.573717 7.185826e-21
## you_govTRUE 1.485369 0.4989103 2.977227 2.975745e-03

• Pretty close!
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Example - bootstrapping a regression standard error

How close are our estimates of the regression coefficient and the standard
error from the bootstrap to the original regression model?
mean(boot_ests)

## [1] 1.480512

sd(boot_ests)

## [1] 0.4921922

coef(summary(true_model))

## Estimate Std. Error t value Pr(>|t|)
## (Intercept) 2.375635 0.2481413 9.573717 7.185826e-21
## you_govTRUE 1.485369 0.4989103 2.977227 2.975745e-03

• Pretty close!

54



But we already knew this!

• In this case, we already had a simpler way to estimate the standard
error

• The bootstrap, however, can be used in more complicated situations
where analytical solutions are not available
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But we already knew this!

For instance, if we have two estimation processes chained together, we
may want to incorporate the estimation uncertainty from the first process
into the second process

• You have a large dataset with hundreds of covariates

• You run a principle component analysis to extract a low-dimensional
summary of your data

• You then include the principle components into a subsequent
regression for predicting an outcome

• The standard errors for the regression do not incorporate the
uncertainty in the PCA

• → The regression standard errors will be too small!

Bootstrapping the entire process, including both the PCA and the
regression, will result in the correct standard errors.
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The bootstrap in general

• In more complex data situations, figuring out the appropriate way to
generate bootstrap samples can require some thought.

• For example, if the data is a time series, we can’t simply sample the
observations with replacement.

• We can instead create blocks of consecutive observations, and
sample those with replacements. Then we paste together sampled
blocks to obtain a bootstrap dataset.
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Bootstrap and prediction error

• In cross-validation, each of the 𝐾 validation folds is distinct from
the other 𝐾 − 1 folds used for training: there is no overlap. This is
crucial for its success.

• To estimate prediction error using the bootstrap, we could think
about using each bootstrap dataset as our training sample, and the
original sample as our validation sample.

• But each bootstrap sample has significant overlap with the original
data. About two-thirds of the original data points appear in each
bootstrap sample.

• This will cause the bootstrap to seriously underestimate the true
prediction error.
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Removing the overlap

• We can fix this problem by only using predictions for those
observations that did not (by chance) occur in the current bootstrap
sample.

• This is the out-of-bag error estimate that we used yesterday when
discussing bagging and Random Forests

• Generally, this method is a little more complicated to code and
cross-validation tends to provide a simpler, more attractive approach
for estimating test error
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Linear Model Selection and
Regularization



Regularization

• We have seen already that sometimes the model that fits best
out-of-sample is not the one that fits best in-sample.

• We have already seen cross-validation as a way to select among a set
of models to optimize out-of-sample fit.

• Regularization is a general idea, with lots of implementations in
different situations

• Regularization methods “intentionally fail” to optimize in-sample fit,
in order to better optimize out-of-sample fit.

• Built into each of these methods is a penalty for the kind of
over-fitting that tends to lead to poor out-of-sample fit, in that class
of models.
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Linear Model Selection and Regularization

• Recall the linear model

𝑌 = 𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑝𝑋𝑝 + 𝜖.

• Despite its simplicity, the linear model has distinct advantages in
terms of its interpretability and often shows good predictive
performance.

• However, the predictive performance of the simple linear model can
be improved, by replacing ordinary least squares fitting with some
alternative fitting procedures.
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Why alternatives to least squares?

• Prediction Accuracy: especially when 𝑝 > 𝑛, to control the variance.

• Model Interpretability: By removing irrelevant features – that is, by
setting the corresponding coefficient estimates to zero – we can
obtain a model that is more easily interpreted.

• Some approaches for automatically performing feature selection.
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Three classes of methods

• Subset Selection. We identify a subset of the 𝑝 predictors that we
believe to be related to the response. We then fit a model using
least squares on the reduced set of variables.

• Shrinkage. We fit a model involving all 𝑝 predictors, but the
estimated coefficients are shrunken towards zero relative to the least
squares estimates. This shrinkage (also known as regularization) has
the effect of reducing variance and can also perform variable
selection.

• Dimension Reduction. We project the 𝑝 predictors into a
𝑀 -dimensional subspace, where 𝑀 < 𝑝. This is achieved by
computing 𝑀 different linear combinations, or projections, of the
variables. Then these 𝑀 projections are used as predictors to fit a
linear regression model by least squares.
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Running Example - Predicting Credit Usage
library(ISLR)
data("Credit")
ols_fit <- lm(Balance ~ Income + Rating + Cards + Age +

Education + Gender + Student + Married + Ethnicity + Limit, data = Credit)
summary(ols_fit)

##
## Call:
## lm(formula = Balance ~ Income + Rating + Cards + Age + Education +
## Gender + Student + Married + Ethnicity + Limit, data = Credit)
##
## Residuals:
## Min 1Q Median 3Q Max
## -161.64 -77.70 -13.49 53.98 318.20
##
## Coefficients:
## Estimate Std. Error t value Pr(>|t|)
## (Intercept) -479.20787 35.77394 -13.395 < 2e-16 ***
## Income -7.80310 0.23423 -33.314 < 2e-16 ***
## Rating 1.13653 0.49089 2.315 0.0211 *
## Cards 17.72448 4.34103 4.083 5.40e-05 ***
## Age -0.61391 0.29399 -2.088 0.0374 *
## Education -1.09886 1.59795 -0.688 0.4921
## GenderFemale -10.65325 9.91400 -1.075 0.2832
## StudentYes 425.74736 16.72258 25.459 < 2e-16 ***
## MarriedYes -8.53390 10.36287 -0.824 0.4107
## EthnicityAsian 16.80418 14.11906 1.190 0.2347
## EthnicityCaucasian 10.10703 12.20992 0.828 0.4083
## Limit 0.19091 0.03278 5.824 1.21e-08 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 98.79 on 388 degrees of freedom
## Multiple R-squared: 0.9551, Adjusted R-squared: 0.9538
## F-statistic: 750.3 on 11 and 388 DF, p-value: < 2.2e-16
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Running Example - Predicting Credit Usage

How well does this model perform?
library(boot)
set.seed(221186)
# Estimate the model (using glm to work with cv.glm)
glm_fit <- glm(Balance ~ ., data = Credit[,-1])
# Conduct 5-fold cross validation and extract the CV MSE
cv_mse <- cv.glm(Credit, glm_fit, K = 5)$delta[1]
cv_mse

## [1] 10085.35
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Shrinkage Methods

Ridge regression and Lasso

• We can alternatively fit a model containing all 𝑝 predictors using a
technique that constrains or regularizes the coefficient estimates, or
equivalently, that shrinks the coefficient estimates towards zero.

• It may not be immediately obvious why such a constraint should
improve the fit, but it turns out that shrinking the coefficient
estimates can significantly reduce their variance (and, thus, the
variance of the predictions we make).
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Ridge regression

• Recall that the least squares fitting procedure estimates
𝛽0, 𝛽1, … , 𝛽𝑝 using the values that minimize

𝑅𝑆𝑆 =
𝑛

∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)
2

.

• In contrast, the ridge regression coefficient estimates ̂𝛽𝑅 are the
values that minimize

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)
2

+ 𝜆
𝑝

∑
𝑗=1

𝛽2
𝑗 = 𝑅𝑆𝑆 + 𝜆

𝑝
∑
𝑗=1

𝛽2
𝑗 ,

where 𝜆 ≥ 0 is a tuning parameter, to be determined separately.
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Ridge regression: continued

• As with least squares, ridge regression seeks coefficient estimates
that fit the data well, by making the RSS small.

• However, the second term, 𝜆 ∑𝑗=1 𝛽2
𝑗 , called a shrinkage penalty, is

small when 𝛽1, … , 𝛽𝑝 are close to zero, and so it has the effect of
shrinking the estimates of 𝛽𝑗 towards zero.

• The tuning parameter 𝜆 serves to control the relative impact of
these two terms on the regression coefficient estimates.

• Selecting a good value for 𝜆 is therefore critical - how should we
pick this?

• Cross-validation, of course!
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Example: Credit data
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Details of Previous Figure

• In the left-hand panel, each curve corresponds to the ridge
regression coefficient estimate for one of the ten variables, plotted as
a function of 𝜆.

• The right-hand panel displays the same ridge coefficient estimates as
the left-hand panel, but instead of displaying 𝜆 on the 𝑥-axis, we
now display ‖ ̂𝛽𝑅

𝜆 ‖2/‖ ̂𝛽‖2, where ̂𝛽 denotes the vector of least squares
coefficient estimates.

• The notation ‖𝛽‖2 denotes the ℓ2 norm (pronounced “ell 2”) of a
vector, and is defined as ‖ ̂𝛽‖2 = √∑𝑝

𝑗=1 𝛽2
𝑗 .
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Ridge regression: scaling of predictors

• The standard least squares coefficient estimates are scale equivariant:
multiplying 𝑋𝑗 by a constant 𝑐 simply leads to a scaling of the least
squares coefficient estimates by a factor of 1/𝑐. In other words,
regardless of how the 𝑗th predictor is scaled, 𝑋𝑗 ̂𝛽𝑗 will remain the
same.

• In contrast, the ridge regression coefficient estimates can change
substantially when multiplying a given predictor by a constant, due
to the sum of squared coefficients term in the penalty part of the
ridge regression objective function.

• Therefore, it is best to apply ridge regression after standardizing the
predictors by dividing by the standard deviation:

̃𝑥𝑖𝑗 = 𝑥𝑖𝑗
𝑠𝑑(𝑥𝑖𝑗)
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Why Does Ridge Regression Improve Over Least Squares?

Reminder: The Bias-Variance tradeoff

• The variance of an estimator refers to the amount that our
estimator, and thus our predictions, would change if we estimated it
using a different dataset

• The variance will typically increase when we overfit a model, as we
will find that the model parameters will have very different estimated
values from one sample to another

• The bias of an estimator refers to the error that occurs from using a
model that is too simplistic relative to the real data generating
process in the world

• The bias will typically increase when we underfit a model, as we will
find that we are unable to capture important features of the data
because our model is too inflexible
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Why Does Ridge Regression Improve Over Least Squares?

The Bias-Variance tradeoff

• Ridge regression (and other shrinkage methods) implicitly try to
strike a balance between over-fitting and under-fitting

• They trade off a little bias (making our models simpler) and in so
doing they reduce the variance (because the simpler models will be
less variable when applied to new data)

• The goal is to try and hit a sweet spot in which we reduce the
variance by a lot, and increase the bias by only a bit
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The Lasso

• Ridge regression shrinks coefficients towards zero, but never exactly
to zero. Ridge regression will therefore include all 𝑝 predictors in the
final model.

• The Lasso regression that overcomes this disadvantage. The lasso
coefficients, ̂𝛽𝐿

𝜆 , minimize the quantity

𝑛
∑
𝑖=1

(𝑦𝑖 − 𝛽0 −
𝑝

∑
𝑗=1

𝛽𝑗𝑥𝑖𝑗)
2

+ 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗| = 𝑅𝑆𝑆 + 𝜆
𝑝

∑
𝑗=1

|𝛽𝑗|

• In statistical parlance, the lasso uses an ℓ1 (pronounced “ell 1”)
penalty instead of an ℓ2 penalty. The ℓ1 norm of a coefficient vector
𝛽 is given by ‖𝛽‖1 = ∑ |𝛽𝑗|.
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The Lasso: continued

• As with ridge regression, the lasso shrinks the coefficient estimates
towards zero.

• However, in the case of the lasso, the ℓ1 penalty has the effect of
forcing some of the coefficient estimates to be exactly equal to zero
when the tuning parameter 𝜆 is sufficiently large.

• The lasso performs variable selection.

• We say that the lasso yields sparse models – that is, models that
involve only a subset of the variables.

• As in ridge regression, selecting a good value of 𝜆 for the lasso is
critical; cross-validation is again the method of choice.
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Example: Credit data
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Comparing the Lasso and Ridge Regression

• Neither ridge regression nor the lasso will universally dominate the
other.

• In general, one might expect the lasso to perform better when the
response is a function of only a relatively small number of predictors.

• However, the number of predictors that is related to the response is
never known a priori for real data sets.

• Cross-validation can also be used in order to determine which
approach is better on a particular data set.
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Selecting the Tuning Parameter for Ridge Regression and Lasso

• We require a method selecting a value for the tuning parameter 𝜆 or
equivalently, the value of the constraint 𝑠.

• Cross-validation provides a simple way to tackle this problem. We
choose a grid of 𝜆 values, and compute the cross-validation error
rate for each value of 𝜆.

• We then select the tuning parameter value for which the
cross-validation error is smallest.

• Finally, the model is re-fit using all of the available observations and
the selected value of the tuning parameter.
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Example

• Let’s say you are interested in predicting US presidential elections.

• In particular, you want to predict the vote share of the incumbent
party in each election.

• You collect 13 variables, including variables on incumbency,
economic performance, presidential approval.

• But these variables are only available starting with the 1952
election...

• ...so there are only 16 observations.

• What, if anything, can we learn from these data?
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Why not linear regression?

• What happens to linear regression in this context?

• If we fit a model with all 13 variables, we get the following...

• Note: I have standardized all the variables (subtract the mean, divide
by the standard deviation). This does not change the fit of the
model, it just makes the coefficients more comparable across models.
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Linear regression (n = 16, k = 13)}
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Mixed signals

• Mixed diagnostics:

• Nothing is significant.

• F-test of all explanatory variables has 𝑝 = 0.08.

• But adjusted 𝑅2 is still 0.91!

• So, is this model any good?

• Some of these diagnostics are breaking because their assumptions
rely on having 𝑘 ≪ 𝑛.
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Assessing linear regression

• Given that we get mixed signals from our standard diagnostics, how
might we better assess the performance of this linear regression?

• Cross-validation!

• It turns out that the LOOCV MSE is 1.6 for this model

• How does that compare to the MSE for LASSO and Ridge
estimates?
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Comparison of Cross-Validation Scores

• In this application, ridge regression produces the best model by
leave-one-out-cross-validation.

• The OLS model performs even worse than the intercept-only model!

• Simulation studies suggest ridge regression works better with highly
collinear explanatory variables, lasso regression when explanatory
variables are not highly collinear.
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Regression Coefficient Comparison

• The ridge regression coefficients are generally similar to (but smaller
than) the original linear regression coefficients we started with...

• ...yet the model performs much better in cross-validation.
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Summary

• Model selection methods are an essential tool for data analysis,
especially for big datasets involving many predictors.

• Research into methods that give sparsity, such as the lasso is an
especially hot area.

• The methods that we have discussed today have involved fitting
linear regression models, via least squares or a shrunken approach,
using the original predictors, 𝑋1, 𝑋2, … , 𝑋𝑝.

• Tomorrow we will explore a class of approaches that transform the
predictors and then fit a least squares model using the transformed
variables.
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