
Day 6: Nonlinear Models and Tree-Based Methods

ME314: Introduction to Data Science and Machine Learning

Jack Blumenau and Kenneth Benoit

16 July 2024

1

Motivation

How popular are the UK political parties?

The last few years have seen dramatic changes in UK politics, most of which has
been tracked closely by a variety of political polling companies. Individual polls
are noisy manifestations of underlying trends in public opinion. We can think
of the task of measuring public support for a given party as a prediction
problem, where results in each polls are data and we want to predict the true
average level of support at each point in time. What is the best model for
predicting such trends?

2

Motivation

10

20

30

40

50

2018 2019 2020 2021 2022

%
 o

f p
op

ul
ar

 v
ot

e

Conservative Labour LibDem

Party Support

3

Motivation

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %
Party Support

4

Motivation

• We are interested in describing how the Conservative lead varies over time.

• What is an appropriate model for this data?

• We could, of course, use a linear regression:
lin_mod <- lm(con_lead ~ date, data = polls)
summary(lin_mod)

...
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 38.1294918 7.6819754 4.964 8.08e-07 ***
date -0.0019228 0.0004173 -4.608 4.56e-06 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
...

5

Motivation

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

Party Support

This is a dumb model for this data.

6

Day 6 Outline

Moving Beyond Linearity

Tree-based Methods

Bagging

Random Forests

7

Moving Beyond Linearity

Motivation

• Traditional models – like linear and logistic regression – can be good for
evaluating theories that imply specific functional forms for the relationship
between outcomes and predictors

• For many social science domains, the theories we have are not sufficiently
detailed to account for the complexity of the data we have to hand

• We therefore need a set of methods which allow us to learn complicated
non-linearities and interactions from the data

• Today’s lecture introduces some of those tools

8

Non-linear models

1. Polynomial regression

2. Step functions

3. Splines

4. Local regression

5. Generalised additive models

9

Basis functions

• Many of the approaches we discuss today are special cases of what are
known as “basis function” approaches.

• They share the idea that, in order to capture non-linear relationships
between predictors and outcome, we can transform X in some way and then
just use a linear model

• Where 𝑏(𝑥) is a function applied to our predictor, we have:

𝑦𝑖 = 𝛽0 + 𝛽1𝑏1(𝑥𝑖) + 𝛽2𝑏2(𝑥𝑖) + ... + 𝛽𝐾𝑏𝐾(𝑥𝑖)

• This is just a linear model on the transformed predictors!

• Advantage: inference tools – such as standard errors, confidence intervals,
hypothesis tests, coefficient estimates, F-tests, etc – all apply as before

10

Polynomial regression

Polynomial regression models
Polynomial regression models take the following form:

Linear: 𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝜖𝑖
Quadratic: 𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥2

𝑖1 + 𝜖𝑖
Cubic: 𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥2

𝑖1 + 𝛽3𝑥3
𝑖1 + 𝜖𝑖

General: 𝑦𝑖 = 𝛼 + 𝛽1𝑥𝑖1 + 𝛽2𝑥2
𝑖1 + ... + 𝛽𝑑𝑥𝑑

𝑖1 + 𝜖𝑖

Where 𝑥2
𝑖1 is just 𝑥𝑖1 ⋅ 𝑥𝑖1 and 𝑥3

𝑖1 is just 𝑥𝑖1 ⋅ 𝑥𝑖1 ⋅ 𝑥𝑖1, and so on (i.e. the
basis function for the quadratic is 𝑏(𝑥𝑖) = 𝑥2

𝑖).

The more polynomial terms we add, the more flexible we are allowing the
relationship between our outcome and our predictor to be.

11

Polynomial regression

Why do polynomial terms allow for non-linear relationships?

• When we include a quadratic term in the model, we are essentially
including an interaction term

• i.e. the interaction between 𝑋1 and itself (because 𝑋1 ⋅ 𝑋1 = 𝑋2
1)

• This implies that the association between 𝑋1 and 𝑌 will depend on the
specific value of 𝑋1 where we evaluate the relationship

• → the effect of a one-unit change in 𝑋1 will depend on the value of 𝑋1
we are changing

12

Polynomial interpretation

Interpreting polynomial coefficients is somewhat difficult:

• It is no longer possible to hold constant all other variables

• i.e. If you increase 𝑋1 by one-unit, then you also increase 𝑋2
1

• We can say something by looking at the signs of 𝛽𝑋2 , 𝛽𝑋3 , etc but inferring
substantive meaning is often difficult

• We can interpret the significance of the squared term: the null hypothesis is
that there is a linear relationship between X and Y. If 𝑝 < 0.05, we can
reject the null of linearity.

13

Polynomial interpretation

• In general it is much more straightforward to produce fitted value plots to
describe the relationship between 𝑋 and 𝑌

• This message applies to all the non-linear methods today: don’t show
tables, plot graphs!

14

Polynomial regression – application

poly_mod_2 <- lm(con_lead ~ poly(as.numeric(date), 2), data = polls)
poly_mod_8 <- lm(con_lead ~ poly(as.numeric(date), 8), data = polls)
poly_mod_15 <- lm(con_lead ~ poly(as.numeric(date), 15), data = polls)

summary(poly_mod_2)

...
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) 2.7431 0.1658 16.55 < 2e-16 ***
poly(as.numeric(date), 2)1 -31.9124 5.3638 -5.95 3.66e-09 ***
poly(as.numeric(date), 2)2 -141.7014 5.3638 -26.42 < 2e-16 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
...

15

Polynomial regression – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

2nd degree polynomial

Party Support

16

Polynomial regression – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

2nd degree polynomial 8th degree polynomial

Party Support

16

Polynomial regression – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

15th degree polynomial 2nd degree polynomial 8th degree polynomial

Party Support

16

Polynomial regression

Advantages:

• Very easy to implement: e.g. poly(x, degree = 3)
• Can be used in any regression framework (for instance, logit)

Disadvantages:

• Can have very poor behaviour in the tails, which makes it a poor tool for
extrapolation beyond the domain of X

• For example, let’s extend the x-asis of our party support date by 50 days in
either direction…

17

Polynomial regression – extrapolation

−40

−20

0

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

15th degree polynomial 2nd degree polynomial 8th degree polynomial

Party Support

18

Step Functions

Step function regression models
Step function, or piecewise-constant, models take the following form:

𝑦𝑖 = 𝛼 + 𝛽1𝐶1(𝑥𝑖1) + 𝛽2𝐶2(𝑥𝑖1) + ... + 𝛽𝑑𝐶𝑑(𝑥𝑖1)𝜖𝑖

Where we transform 𝑥 into a set of dummy variables by defining a set of
cutpoints, 𝑐1, 𝑐2, ..., 𝑐𝑘 across the range of 𝑥:

𝐶0(𝑥) = 𝐼(𝑋 < 𝑐1)
𝐶1(𝑥) = 𝐼(𝑐1 ≤ 𝑥 < 𝑐2)
𝐶2(𝑥) = 𝐼(𝑐2 ≤ 𝑥 < 𝑐3)

...
𝐶𝐾(𝑥) = 𝐼(𝑐𝑘 ≤ 𝑥)

The more cutpoints we add, the more flexible we are allowing the relationship
between our outcome and our predictor to be.

19

Step functions – application

We can use the cut() function to cut a variable into equal-length intervals:
table(cut(polls$date, 6))

##
2022-07-10 2021-09-03 2020-10-29 2019-12-11 2019-02-18 2018-04-14
95 128 234 134 203 253

We can then include these in the model (as a set of dummy variables):

step_mod_4 <- lm(con_lead ~ cut(date, 4), data = polls)
step_mod_8 <- lm(con_lead ~ cut(date, 8), data = polls)
step_mod_20 <- lm(con_lead ~ cut(date, 20), data = polls)

20

Step functions – application

summary(step_mod_4)

...
Coefficients:
Estimate Std. Error t value Pr(>|t|)
(Intercept) -0.2658 0.5072 -0.524 0.600
cut(date, 4)2021-04-01 5.2524 0.6270 8.377 <2e-16 ***
cut(date, 4)2019-12-11 6.6375 0.6611 10.040 <2e-16 ***
cut(date, 4)2018-09-13 0.2191 0.6074 0.361 0.718

...

21

Step functions – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

4 steps

Party Support

22

Step functions – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

4 steps 8 steps

Party Support

22

Step functions – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

20 steps 4 steps 8 steps

Party Support

22

Splines – Piecewise polynomials

• Polynomial models: specify a single polynomial across the domain of 𝑋
• Step function models: estimate a single mean parameter for different
ranges of 𝑋

• Splines: combine both approaches by specifying separate polynomial
models for different regions of 𝑋

23

Splines – Piecewise polynomials

Piecewise polynomial models
Regression splines generalise the step-function approach above by allowing for
more flexible functional forms for different ranges of 𝑋:

𝑦𝑖 = { 𝛽01 + 𝛽11𝑥𝑖 + 𝛽21𝑥2
𝑖 + 𝛽31𝑥3

𝑖 + 𝜖𝑖 if 𝑥𝑖 < 𝑐;
𝛽02 + 𝛽12𝑥𝑖 + 𝛽22𝑥2

𝑖 + 𝛽32𝑥3
𝑖 + 𝜖𝑖 if 𝑥𝑖 ≥ 𝑐.

where 𝑐 is a ”knot” which defines a point in 𝑋 at which the coefficients change.

More cutpoints, and higher order polynomials, imply a more flexible
relationship between our outcome and our predictor. E.g.

𝑦𝑖 =
⎧{
⎨{⎩

𝛽01 + 𝛽11𝑥𝑖 + 𝛽21𝑥2
𝑖 + 𝛽31𝑥3

𝑖 + 𝜖𝑖 if 𝑥𝑖 < 𝑐1;
𝛽02 + 𝛽12𝑥𝑖 + 𝛽22𝑥2

𝑖 + 𝛽32𝑥3
𝑖 + 𝜖𝑖 if 𝑐1 ≥ 𝑥𝑖 < 𝑐2

𝛽03 + 𝛽13𝑥𝑖 + 𝛽23𝑥2
𝑖 + 𝛽33𝑥3

𝑖 + 𝜖𝑖 if 𝑥𝑖 ≥ 𝑐2.

24

Splines – Piecewise polynomials

Piecewise polynomial models
Regression splines generalise the step-function approach above by allowing for
more flexible functional forms for different ranges of 𝑋:

𝑦𝑖 = { 𝛽01 + 𝛽11𝑥𝑖 + 𝛽21𝑥2
𝑖 + 𝛽31𝑥3

𝑖 + 𝜖𝑖 if 𝑥𝑖 < 𝑐;
𝛽02 + 𝛽12𝑥𝑖 + 𝛽22𝑥2

𝑖 + 𝛽32𝑥3
𝑖 + 𝜖𝑖 if 𝑥𝑖 ≥ 𝑐.

where 𝑐 is a ”knot” which defines a point in 𝑋 at which the coefficients change.

More cutpoints, and higher order polynomials, imply a more flexible
relationship between our outcome and our predictor. E.g.

𝑦𝑖 =
⎧{
⎨{⎩

𝛽01 + 𝛽11𝑥𝑖 + 𝛽21𝑥2
𝑖 + 𝛽31𝑥3

𝑖 + 𝜖𝑖 if 𝑥𝑖 < 𝑐1;
𝛽02 + 𝛽12𝑥𝑖 + 𝛽22𝑥2

𝑖 + 𝛽32𝑥3
𝑖 + 𝜖𝑖 if 𝑐1 ≥ 𝑥𝑖 < 𝑐2

𝛽03 + 𝛽13𝑥𝑖 + 𝛽23𝑥2
𝑖 + 𝛽33𝑥3

𝑖 + 𝜖𝑖 if 𝑥𝑖 ≥ 𝑐2.

24

Splines – Piecewise polynomials

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

Party Support

What is wrong here?

25

Splines – Piecewise polynomials

• Even though we would like to model separate polynomials on either side of
the knot/cutpoint, we don’t want a big discontinuity at that point

• Instead, we would like to constrain the estimates so that

• There is no disconuity at the knots
• The piecewise polynomials are smooth at the knots

• We can constrain the estimation to achieve these properties by using
truncated basis functions of 𝑋

26

Splines – implementation

• As before, we can estimate splines by transforming 𝑥 and adding the
basis-spline transformation (bs()) to a linear regression

library(splines)
spline_mod_3 <- lm(con_lead ~ bs(date, df = 6, degree = 3), data = polls)
spline_mod_5 <- lm(con_lead ~ bs(date, df = 8, degree = 3), data = polls)
spline_mod_8 <- lm(con_lead ~ bs(date, df = 11, degree = 3), data = polls)

• Note that df is degrees of freedom, and is equal to number of knots + 3

• Note also here that degree = 3 means we are fitting cubic splines, but we
could fit more flexible relationships between knots

• We are placing the knots at uniform quantiles here, but we could also put
more knots in regions of 𝑥 which have more variability

• → lots of choices!

27

Splines – Piecewise polynomials

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

3 knots

Party Support

28

Splines – Piecewise polynomials

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

3 knots 5 knots

Party Support

28

Splines – Piecewise polynomials

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

3 knots 5 knots 8 knots

Party Support

28

Local linear regression

• Local regression models do not account for non-linearities not by
transforming 𝑥 using a basis function

• Instead, they estimate the relationship between 𝑥 and 𝑦 at different points
in the range of 𝑥

• For each point, 𝑥0, we fit a weighted linear regression model using only
those observations that are within some distance of 𝑥0

• Observations that are closer to 𝑥0 are assigned a higher weight in
determining the local regression slope than observations further away

• The key parameter here is the span, 𝑠, which controls the proportion of
points used to estimate the local regression

• High values of 𝑠 → less flexible model
• Low values of 𝑠 → more flexible model

29

Local linear regression

0.0 0.2 0.4 0.6 0.8 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O
OO

O

O

O

O

O

O

O

O

OO

O

O

O
O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

OO

O

O

O

OO

O

O

O

O

O

O

O

OO

O

O

O

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O
OO

O

O

O

O

0.0 0.2 0.4 0.6 0.8 1.0

−
1

.0
−

0
.5

0
.0

0
.5

1
.0

1
.5

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O
OO

O

O

O

O

O

O

O

O

OO

O

O

O
O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

OO

O

O

O

OO

O

O

O

O

O

O

O

OO

O

O

O

OO

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

O

OO

O

O

O
O

O

O

O

O

O

O

OO

O

O

O

O

O

O

O

O

O

O

OO

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

OO

O

O

Local Regression

• With a sliding weight function, we fit separate linear fits over the range of 𝑋
by weighted least squares.

• As 𝑠 decreases, so does the size of the sliding window

30

Local linear regression – application

loess_1 <- loess(con_lead ~ as.numeric(date), data = polls, span = 1)
loess_.5 <- loess(con_lead ~ as.numeric(date), data = polls, span = .5)
loess_.2 <- loess(con_lead ~ as.numeric(date), data = polls, span = .2)

31

Local linear regression – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

span = 1

Party Support

32

Local linear regression – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

span = .5 span = 1

Party Support

32

Local linear regression – application

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

span = .2 span = .5 span = 1

Party Support

32

Which Wiggle is Best?

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

loess Polynomial Spline Step function

Party Support

33

Choices, choices

Note that each of these methods requires the researcher to make modelling
decisions which are consequential for prediction:

1. Polynomial regression

• Choices: Order of polynomial (𝑋2 , 𝑋2 , 𝑋3 , etc)

2. Step functions

• Choices: Number of steps; where they are placed

3. Splines

• Choices: Number of knots; where they are placed; order of polynomial

4. Local regression

• Choices: Span

5. Generalised additive models

• Choices: Possibly all of the above!
34

Are Some Wiggles Better Than Others?

We have just seen…

• …that there are many ways to fit non-linear relationships to our data.

• …each method gives similar, though not identical, predictions.

• …the results each method gives depends on the modelling decisions we
make (order of polynomial; degrees-of-freedom; number of steps;
bandwidth; etc)

Question: Which wiggly line is the best wiggly line?

Answer: Find out tomorrow! (Spoiler: it depends on the task, but we have tools to
work it out.)

35

Are Some Wiggles Better Than Others?

We have just seen…

• …that there are many ways to fit non-linear relationships to our data.

• …each method gives similar, though not identical, predictions.

• …the results each method gives depends on the modelling decisions we
make (order of polynomial; degrees-of-freedom; number of steps;
bandwidth; etc)

Question: Which wiggly line is the best wiggly line?

Answer: Find out tomorrow! (Spoiler: it depends on the task, but we have tools to
work it out.)

35

Are Some Wiggles Better Than Others?

We have just seen…

• …that there are many ways to fit non-linear relationships to our data.

• …each method gives similar, though not identical, predictions.

• …the results each method gives depends on the modelling decisions we
make (order of polynomial; degrees-of-freedom; number of steps;
bandwidth; etc)

Question: Which wiggly line is the best wiggly line?

Answer:

Find out tomorrow! (Spoiler: it depends on the task, but we have tools to
work it out.)

35

Are Some Wiggles Better Than Others?

We have just seen…

• …that there are many ways to fit non-linear relationships to our data.

• …each method gives similar, though not identical, predictions.

• …the results each method gives depends on the modelling decisions we
make (order of polynomial; degrees-of-freedom; number of steps;
bandwidth; etc)

Question: Which wiggly line is the best wiggly line?

Answer: Find out tomorrow! (Spoiler: it depends on the task, but we have tools to
work it out.)

35

Easier Question: Which Wiggle is Worst?

−10

0

10

20

2018 2019 2020 2021 2022

C
on

 %
 −

 L
ab

 %

lm loess Polynomial Spline Step function

Party Support

36

Generalized Additive Models

One of the great things about linear regression (or, regression in general) is that
we can include many predictors:

𝑦𝑖 = 𝛽0 + 𝛽1𝑥𝑖1 + 𝛽2𝑥𝑖2 + ⋯ + 𝛽𝑝𝑥𝑖𝑝 + 𝜖𝑖.
Generalised additive models provide a framework in which we can incorporate
flexible non-linearities for several variables into the additive structure of linear
models:

𝑦𝑖 = 𝛽0 + 𝑓1(𝑥𝑖1) + 𝑓2(𝑥𝑖2) + ⋯ + 𝑓𝑝(𝑥𝑖𝑝) + 𝜖𝑖

“Additive” because we calculate 𝑓𝑗 for each 𝑋𝑗 and then add them together!

37

Generalized Additive Models

• We can incorporate many of the methods we’ve just learned into a gam

• Splines – bs() or ns()
• Local regression – lo()
• Step functions – cut()
• Polynomials – poly()

• We can also mix terms – some linear, some non-linear – depending on our
prior beliefs about functional form

• We can compare models with and without non-linear components using
anova()

• Although they are additive, we can include interactions in the GAM just as
we would in regression

38

GAM Example

Imagine we want to predict the wage of an individual (𝑌), given a list of
covariates:

1. Age (continuous)
2. Year of measurement (continuous)
3. Race (categorical)
4. Education (categorical)
5. Marital status (categorical)

We might reasonably think that the outcome varies non-linearly with both age
and year of measurement.

39

GAM Example

'data.frame': 3000 obs. of 11 variables:
$ year : int 2006 2004 2003 2003 2005 2008 2009 2008 2006 2004 ...
$ age : int 18 24 45 43 50 54 44 30 41 52 ...
$ maritl : Factor w/ 5 levels "1. Never Married",..: 1 1 2 2 4 2 2 1 1 2 ...
$ race : Factor w/ 4 levels "1. White","2. Black",..: 1 1 1 3 1 1 4 3 2 1 ...
$ education : Factor w/ 5 levels "1. < HS Grad",..: 1 4 3 4 2 4 3 3 3 2 ...
$ region : Factor w/ 9 levels "1. New England",..: 2 2 2 2 2 2 2 2 2 2 ...
$ jobclass : Factor w/ 2 levels "1. Industrial",..: 1 2 1 2 2 2 1 2 2 2 ...
$ health : Factor w/ 2 levels "1. <=Good","2. >=Very Good": 1 2 1 2 1 2 2 1 2 2 ...
$ health_ins: Factor w/ 2 levels "1. Yes","2. No": 2 2 1 1 1 1 1 1 1 1 ...
$ logwage : num 4.32 4.26 4.88 5.04 4.32 ...
$ wage : num 75 70.5 131 154.7 75 ...

40

GAM Example

library(gam)
linear_mod <- gam(wage ~ year + age + race + education + maritl,

data = Wage)
gam_mod <- gam(wage ~ bs(year, 5) + bs(age,4) + race + education + maritl,

data = Wage)

anova(linear_mod, gam_mod) # F test

Analysis of Deviance Table
##
Model 1: wage ~ year + age + race + education + maritl
Model 2: wage ~ bs(year, 5) + bs(age, 4) + race + education + maritl
Resid. Df Resid. Dev Df Deviance Pr(>Chi)
1 2986 3679441
2 2979 3595977 7 83464 2.2e-12 ***

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

41

GAM Example

2003 2005 2007 2009

−
3
0

−
2
0

−
1
0

0
1
0

2
0

3
0

20 30 40 50 60 70 80

−
5
0

−
4
0

−
3
0

−
2
0

−
1
0

0
1
0

2
0

−
3
0

−
2
0

−
1
0

0
1
0

2
0

3
0

4
0

<HS HS <Coll Coll >Coll

f
1
(y
ea
r)

f
2
(a
g
e)

f
3
(e
d
u
ca
ti
o
n
)

year age
education

42

GAMs for classification

𝑙𝑜𝑔 (𝑝(𝑋)
1 − 𝑝(𝑋)) = 𝛽0 + 𝑓1(𝑋1) + 𝑓2(𝑋2) + ⋯ + 𝑓𝑝(𝑋𝑝).

2003 2005 2007 2009

−
4

−
2

0
2

4

20 30 40 50 60 70 80

−
8

−
6

−
4

−
2

0
2

−
4

−
2

0
2

4

HS <Coll Coll >Coll

f
1
(y
ea
r)

f
2
(a
g
e)

f
3
(e
d
u
ca
ti
o
n
)

year age
education

𝑔𝑎𝑚(𝐼(𝑤𝑎𝑔𝑒 > 250) ∼ 𝑦𝑒𝑎𝑟 + 𝑏𝑠(𝑎𝑔𝑒, 𝑑𝑓 =
5) + 𝑒𝑑𝑢𝑐𝑎𝑡𝑖𝑜𝑛, 𝑓𝑎𝑚𝑖𝑙𝑦 = 𝑏𝑖𝑛𝑜𝑚𝑖𝑎𝑙)

43

A Call to (Wiggly) Arms

Theory doesn’t tell us to expect linearity, and our machines don’t compel
us to use it. Linear regression is then employed for no better reason than
that users know how to type lm but not gam. You now know better, and
can spread the word.

– Cosma Shalizi

44

Break

45

Tree-based Methods

Motivation

Predicting women’s wages

Can we predict how much women earn? Using data from the National
Longitudinal Survey of Youth, we will try to predict women’s wages from a set of
individual and occupational characteristics. In addition to building our
predictive model, we will focus on which variables are most important for
constructing these predictions.

46

Motivation

Rows: 1,184
Columns: 15
$ wage <dbl> 6700, 1300, 2900, 1538, 1625, 2452, 1400, 1450, 1500, 1016~
$ age <dbl> 32, 33, 32, 30, 31, 30, 30, 29, 32, 29, 33, 32, 33, 31, 29~
$ selfemp <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
$ numChildren <dbl> 1, 2, 0, 0, 1, 1, 1, 0, 0, 0, 2, 2, 0, 1, 0, 0, 1, 2, 1, 0~
$ educ <chr> "4.College", "2.High school", "4.College", "4.College", "2~
$ school <lgl> FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FAL~
$ tenure <dbl> 0.4807692, 1.0000000, 4.3461538, 0.3076923, 1.5384615, 4.7~
$ fullTime <lgl> TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, TRUE, TRUE, FALSE, FA~
$ unionized <dbl> NA, 0, 1, NA, 0, 1, 1, 0, 0, NA, 0, 0, NA, 0, 1, 0, 1, 0, ~
$ firmSize <chr> NA, "1. Less than 30", "3. 300+", NA, "2. 30-
299", "3. 300~
$ marstat <chr> "Cohabiting", "No romantic union", "No romantic union", "N~
$ urban <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ region <dbl> 1, 4, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1~
$ hazardous <dbl> 1.153185, 1.119433, 1.952752, 1.638367, 1.265751, 1.119433~
$ teamwork <dbl> 4.166900, 4.583686, 4.141300, 4.310577, 4.307690, 4.583686~

47

Tree-based Methods

While we could use linear regression to predict this outcome, here we will focus
on tree-based methods.

Approach:

1. Stratify or segment the predictor space into a number of simple regions

2. Calculate the mean outcome in each region

3. Predict ̂𝑦𝑖 on the basis of the region into which 𝑖 falls
Since the set of splitting rules used to segment the predictor space can be
summarised in a tree, these types of approaches are known as decision-tree
methods.

48

Pros and Cons

• Tree-based methods are simple and useful for interpretation.

• However they typically are not competitive with the best supervised
learning approaches in terms of prediction accuracy.

• Hence we also discuss bagging, and random forests. These methods grow
multiple trees which are then combined to yield a single consensus
prediction.

• Combining a large number of trees can often result in dramatic
improvements in prediction accuracy, at the expense of some loss
interpretation.

49

A Simple Tree

library(tree)

wage_tree <- tree(log(wage) ~ tenure + numChildren, data = wages)

50

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

A regression tree predicting log wage as a function of tenure and number of chil-
dren

51

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

At any internal node, the label (of the form 𝑋𝑗 < 𝑡𝑘) indicates the left-hand
branch emanating from that split, and the right-hand branch corresponds to𝑋𝑗 ≥
𝑡𝑘

51

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

Here, the left-hand branch corresponds to 𝑡𝑒𝑛𝑢𝑟𝑒 < 2.02, and the right-hand
branch corresponds to 𝑡𝑒𝑛𝑢𝑟𝑒 ≥ 2.02

51

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

The points along the tree where the predictor space is split are referred to as
internal nodes.

51

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

In this tree, three internal nodes are indicated:
• 𝑡𝑒𝑛𝑢𝑟𝑒 < 2.02
• 𝑛𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 < 1.5
• 𝑛𝑢𝑚𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 < 2.5

51

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

Note that the splitting rule is different for the two internal nodes involving num-
Children! (More on this later)

51

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

The terminal nodes, or leaves, indicate the mean of 𝑌 for the observations in that
partition.

51

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

We use the values in the leaves as the predicted values, ̂𝑦, for new observations.

51

A Simple Tree

|tenure < 2.02885

numChildren < 1.5 numChildren < 2.5

7.265 6.983
7.483 7.196

Interpretation:
• 𝑡𝑒𝑛𝑢𝑟𝑒 is the most important factor in determining 𝑤𝑎𝑔𝑒, and individuals
with less experience earn lower salaries than more experienced individuals

• Conditional on 𝑡𝑒𝑛𝑢𝑟𝑒, people with fewer children earn more than people
with more children

51

Results

0 5 10 15

0
2

4
6

8

Tenure

N
um

be
r

of
 C

hi
ld

re
n

R4 = 7.20

R3 = 7.48

R2 = 6.98

R1 = 7.26

The tree stratifies or segments individuals into four regions of predictor space

52

Results

0 5 10 15

0
2

4
6

8

Tenure

N
um

be
r

of
 C

hi
ld

re
n

R4 = 7.20

R3 = 7.48

R2 = 6.98

R1 = 7.26

𝑅1 = 𝐸(𝑌 |𝑇 𝑒𝑛𝑢𝑟𝑒 < 2.02, 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 < 1.5)

𝑅2 = 𝐸(𝑌 |𝑇 𝑒𝑛𝑢𝑟𝑒 < 2.02, 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 > 1.5)

52

Results

0 5 10 15

0
2

4
6

8

Tenure

N
um

be
r

of
 C

hi
ld

re
n

R4 = 7.20

R3 = 7.48

R2 = 6.98

R1 = 7.26

𝑅3 = 𝐸(𝑌 |𝑇 𝑒𝑛𝑢𝑟𝑒 > 2.02, 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 < 2.5)

𝑅4 = 𝐸(𝑌 |𝑇 𝑒𝑛𝑢𝑟𝑒 > 2.02, 𝐶ℎ𝑖𝑙𝑑𝑟𝑒𝑛 > 2.5)

52

How to Grow a Tree

1. We divide the predictor space – that is, the set of possible values for
𝑋1, 𝑋2, … , 𝑋𝑝 – into 𝐽 distinct and non-overlapping regions,
𝑅1, 𝑅2, … , 𝑅𝐽 .

2. For every observation that falls into the region 𝑅𝑗, we make the same
prediction, which is simply the mean of the response values for the training
observations in 𝑅𝑗.

53

How to Grow a Tree

• In theory, the regions could have any shape. However, we choose to divide
the predictor space into high-dimensional rectangles, or boxes, for
simplicity and for ease of interpretation of the resulting predictive model.

• The goal is to find boxes 𝑅1, … , 𝑅𝐽 that minimize the Residual Sum of
Squares (RSS), given by

𝑅𝑆𝑆 =
𝐽

∑
𝑗=1

∑
𝑖∈𝑅𝑗

(𝑦𝑖 − ̂𝑦𝑅𝑗
)2,

where ̂𝑦𝑅𝑗
is the mean response for the training observations within the

𝑗th box.

54

How to Grow a Tree

• Unfortunately, it is not computationally feasible to consider every possible
partition of the feature space into 𝐽 boxes.

• For this reason, we take a top-down, greedy approach that is known as
recursive binary splitting.

• The approach is top-down because it begins at the top of the tree and then
successively splits the predictor space; each split is indicated via two new
branches further down on the tree.

• It is greedy because at each step of the tree-building process, the best split
is made at that particular step, rather than looking ahead and picking a
split that will lead to a better tree in some future step.

55

How to Grow a Tree

• We first select the predictor 𝑋𝑗 and the cutpoint 𝑠 such that splitting the
predictor space into the regions {𝑋|𝑋𝑗 < 𝑠} and {𝑋|𝑋𝑗 ≥ 𝑠} leads to
the greatest possible reduction in RSS.

• Next, we repeat the process, looking for the best predictor and best
cutpoint in order to split the data further so as to minimize the RSS within
each of the resulting regions.

• However, this time, instead of splitting the entire predictor space, we split
one of the two previously identified regions. We now have three regions.

• Again, we look to split one of these three regions further, so as to minimize
the RSS. The process continues until a stopping criterion is reached; for
instance, we may continue until no region contains more than five
observations.

56

How to Grow a Tree – illustration

57

Predictions

• We predict the response for a given test observation using the mean of the
training observations in the region to which that test observation belongs.

• Note that one interpretation of the tree-building process is similar to the
basis functions we discussed earlier.

• We seek a transformation of a set of X variables, 𝑓(𝑥), which we then
include in a regression for the outcome.

• The transformation we use is to create a set of dummy variables, 𝑋𝑖,
defined by “rectangular” segmentations of the covariate space

• With these, we then estimate 𝑦𝑖 = ∑𝑅
𝑟=1 𝛽𝑟𝑋𝑟𝑖 + 𝜖𝑖, and make

predictions using this fitted model

58

Application

wage_tree <- tree(log(wage) ~ age + selfemp + numChildren +
educ + school + tenure + fullTime +
unionized + firmSize + marstat +
urban + region + hazardous +
teamwork,

data = wages)

59

Application

|tenure < 3.56731

numChildren < 0.5

teamwork < 4.48595

teamwork < 4.47516

age < 31.5

tenure < 3.78846

hazardous < 2.09492
7.421

7.121 6.040

7.332

7.404

8.548

7.613 7.187

60

Pruning a tree

• The process described above may produce good predictions on the training
set, but is likely to overfit the data, leading to poor test set performance.

• A smaller tree with fewer splits (that is, fewer regions 𝑅1, … , 𝑅𝐽) might
lead to lower variance and better interpretation at the cost of a little bias.

• One possible alternative to the process described above is to grow the tree
only so long as the decrease in the RSS due to each split exceeds some
(high) threshold.

• This strategy will result in smaller trees, but is too short-sighted: a
seemingly worthless split early on in the tree might be followed by a very
good split – that is, a split that leads to a large reduction in RSS later on.

61

Pruning a tree

• Alternative strategy: grow a very large tree 𝑇0, and then prune it back in
order to obtain a subtree.

• Cost complexity pruning – also known as weakest link pruning – is used to
do this.

• Intuition: Prefer (sub)trees that fit the data well, but penalise them for having
too many leaves

• Rather than minimizing 𝑅𝑆𝑆 , we instead minimize
𝑅𝑆𝑆 + 𝛼 ⋅ (#terminal nodes)

62

Pruning a tree

• The tuning parameter 𝛼 controls a trade-off between the subtree’s
complexity and its fit to the training data.

• When 𝛼 = 0, then we get the same tree as without the penalty

• As 𝛼 increases, we recursively “snip” off the least important splits

63

Pruning a tree

Nice tree!

64

Pruning a tree

Nicer tree!

65

Pruning a tree – application

wage_tree_alpha_0 <- prune.tree(wage_tree, 0) # alpha = 0
plot(wage_tree_alpha_0)
text(wage_tree_alpha_0)

|tenure < 3.56731

numChildren < 0.5

teamwork < 4.48595
teamwork < 4.47516

age < 31.5

tenure < 3.78846

hazardous < 2.09492
7.421

7.121 6.040

7.332

7.404

8.548

7.613 7.187

66

Pruning a tree – application

wage_tree_alpha_5 <- prune.tree(wage_tree, 5) # alpha = 5
plot(wage_tree_alpha_5)
text(wage_tree_alpha_5)

|tenure < 3.56731

numChildren < 0.5

teamwork < 4.48595
teamwork < 4.475167.421

7.121 6.040

7.332

7.479

67

Pruning a tree – application

wage_tree_alpha_8 <- prune.tree(wage_tree, 8) # alpha = 8
plot(wage_tree_alpha_8)
text(wage_tree_alpha_8)

|tenure < 3.56731

7.218 7.479

68

Choosing the best subtree

• We select an optimal value ̂𝛼 using cross-validation.

• More on this tomorrow!

• We then return to the full data set and obtain the subtree corresponding to
̂𝛼.

69

Summary: tree algorithm

1. Use recursive binary splitting to grow a large tree on the training data,
stopping only when each terminal node has fewer than some minimum
number of observations.

2. Apply cost complexity pruning to the large tree in order to obtain a
sequence of best subtrees, as a function of 𝛼.

3. Use K-fold cross-validation to choose 𝛼. For each 𝑘 = 1, … , 𝐾 :

3.1 Repeat Steps 1 and 2 on the 𝐾−1
𝐾 th fraction of the training data, excluding the

𝑘th fold.
3.2 Evaluate the mean squared prediction error on the data in the left-out 𝑘th

fold, as a function of 𝛼. Average the results, and pick 𝛼 to minimize the
average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of 𝛼.

70

Classification Trees

• Very similar to a regression tree, except that it is used to predict a
qualitative response rather than a quantitative one.

• For a classification tree, we predict that each observation belongs to the
most commonly occurring class of training observations in the region to
which it belongs.

71

Details of classification trees

• Just as in the regression setting, we use recursive binary splitting to grow a
classification tree.

• In the classification setting, RSS cannot be used as a criterion for making
the binary splits.

• A natural alternative to RSS is the classification error rate. This is simply the
fraction of the training observations in that region that do not belong to the
most common class:

𝐸 = 1 − 𝑚𝑎𝑥⏟
𝑘

(̂𝑝𝑚𝑘).

Here ̂𝑝𝑚𝑘 represents the proportion of training observations in the 𝑚th
region that are from the 𝑘th class.

• However classification error is not sufficiently sensitive for tree-growing,
and in practice two other measures are preferable.

72

Gini index and Deviance

• The Gini index is defined by

𝐺 =
𝐾

∑
𝑘=1

̂𝑝𝑚𝑘(1 − ̂𝑝𝑚𝑘),

a measure of total variance across the 𝐾 classes. The Gini index takes on a
small value if all of the ̂𝑝𝑚𝑘’s are close to zero or one.

• For this reason the Gini index is referred to as a measure of node purity – a
small value indicates that a node contains predominantly observations
from a single class.

• An alternative to the Gini index is cross-entropy, given by

𝐷 = −
𝐾

∑
𝑘=1

̂𝑝𝑚𝑘𝑙𝑜𝑔 ̂𝑝𝑚𝑘.

• Both the Gini index and the cross-entropy are very similar numerically. 73

When Should I Grow A Tree?

• Linear models

• If the relationship between predictors and outcome is actually linear, then
linear regression will give the best predictions

• Tree-based models

• If the relationship between the features and the response is non-linear and
interactive between features, then trees are likely to be successful

74

Trees Versus Linear Models

wage_tree <- tree(log(wage) ~ age + selfemp + numChildren + educ + school +
tenure + fullTime + unionized + firmSize + marstat +
urban + region + hazardous + teamwork,

data = wages)

wage_lm <- lm(log(wage) ~ age + selfemp + numChildren + educ + school +
tenure + fullTime + unionized + firmSize + marstat +
urban + region + hazardous + teamwork,

data = wages)

75

Trees Versus Linear Models

4 6 8 10 12

4
6

8
10

12
Tree−based model

Predicted values

Tr
ue

 o
ut

co
m

e

RMSE = 0.55

4 6 8 10 12

4
6

8
10

12

Linear model

Predicted values

Tr
ue

 o
ut

co
m

e

RMSE = 0.51

76

Advantages of Trees

• Trees are very easy to explain to people (often even easier than linear
regression).

• Some people believe that decision trees more closely mirror human
decision-making than do other common regression/classification
approaches.

• Trees can be displayed graphically, and are easily interpreted even by a
non-expert (especially if they are small).

• Trees do not require you to specify the functional form between the
predictors and the response and can automatically detect often complex
interactions).

77

Disadvantages of Trees

• Unfortunately, trees generally do not have the same level of predictive
accuracy as some of the other regression and classification approaches
we’ve seen previously.

• Trees tend to be very high variance: a small change in the data used to
estimate the model can cause large changes in the estimated tree.

However, by aggregating many decision trees, the predictive performance of trees
can be substantially improved.

78

Bagging

High-Variance Trees

split <- sample(1:nrow(wages), nrow(wages)/2)

wage_tree <- tree(log(wage) ~ age + selfemp + numChildren + educ + school +
tenure + fullTime + unionized + firmSize + marstat +
urban + region + hazardous + teamwork,

data = wages[split,])

wage_tree2 <- tree(log(wage) ~ age + selfemp + numChildren + educ + school +
tenure + fullTime + unionized + firmSize + marstat +
urban + region + hazardous + teamwork,

data = wages[-split,])

79

High-Variance Trees

|tenure < 4.18269

numChildren < 0.5

hazardous < 1.28621

hazardous < 1.09212tenure < 1.84615
urban < 0.5

hazardous < 1.54765

teamwork < 3.76438
tenure < 3.125

teamwork < 4.53971
teamwork < 4.47516

hazardous < 1.38565

tenure < 2.55769

tenure < 4.46154

7.6657.173
7.325

8.208
7.2057.843

7.518

7.095

5.9986.977

7.6206.964

7.366

8.0437.505

|tenure < 2.08654

numChildren < 1.5

hazardous < 1.23818

hazardous < 1.17689

teamwork < 3.8841

tenure < 4.83654

tenure < 3.49038hazardous < 1.34545

numChildren < 3.5

region < 1.5

region < 3.5
7.3356.319

7.467

6.942

7.1395.914
7.6816.9457.696

7.3847.629

6.950

80

Bagging

• Bootstrap aggregation, or bagging, is a general-purpose procedure for
reducing the variance of a statistical learning method.

• Recall that given a set of 𝑛 independent observations 𝑍1, … , 𝑍𝑛, each
with variance 𝜎2, the variance of the mean ̄𝑍 of the observations is given
by 𝜎2/𝑛.

• → averaging a set of observations reduces variance

• Practical constraint: we generally do not have access to multiple training
sets.

81

Bagging

• Instead, we can bootstrap, by taking repeated samples (with replacement)
from the (single) training data set.

• More detail on this tomorrow!

• In this approach we generate 𝐵 different bootstrapped training data sets.

• We then train our method on the 𝑏th bootstrapped training set in order to
get ̂𝑓∗𝑏(𝑥), the prediction at a point 𝑥.

• We then average all the predictions to obtain

̂𝑓𝑏𝑎𝑔(𝑥) = 1
𝐵

𝐵
∑
𝑏=1

̂𝑓∗𝑏(𝑥).

• We do not prune these trees. Instead, we rely on the averaging process to
prevent against overfitting

82

Bagging classification trees

• Take 𝐵 samples (with replacement) from the training data

• Train a classification tree on each sample

• For each test observation, record the class predicted by each of the 𝐵 trees

• Take a majority vote: the final prediction is the most commonly occurring
class among the 𝐵 predictions

83

Out-of-Bag Error Estimation

• The key to bagging is that trees are repeatedly fit to bootstrapped subsets
of the observations.

• On average, each bagged tree makes use of around two-thirds of the
observations.

• The remaining one-third of the observations not used to fit a given bagged
tree are referred to as the out-of-bag (OOB) observations.

• We can predict the response for the 𝑖th observation using each of the trees
in which that observation was OOB.

• This will yield around 𝐵/3 predictions for the 𝑖th observation, which we
average.

• → our estimates of prediction error are based on out-of-sample
predictions!

• More on this tomorrow!

84

Random Forests

Random Forests

• Random forests provide an improvement over bagged trees by way of a
small tweak that decorrelates the trees. This reduces the variance when we
average the trees.

• As in bagging, we build a number of decision trees on bootstrapped training
samples.

• But when building these decision trees, each time a split in a tree is
considered, a random selection of 𝑚 predictors is chosen from the full set
of 𝑝 predictors.

• The model is allowed to use only one of those 𝑚 predictors.

• A fresh selection of 𝑚 predictors is taken at each split, and typically we
choose 𝑚 ≈ √𝑝

85

Random Forests – WTF?

Why the hell does it help to have fewer predictors to predict our outcome?

• Imagine there is just one very strong predictor in the data, and a bunch of
middling predictors

• In pretty much every bagged dataset, the strong predictor will be used at
the top of the tree → all the trees will look the same!

• Averaging highly correlated quantities doesn’t reduce variance very much

• RF excludes the strong predictor sometimes, giving the other (also
important) predictors more of a chance

Key point: Reducing the correlation in predictions across bootstrapped samples
decreaes variance, which is good for test set error.

86

Bagging and Random Forests Application

library(randomForest)

wage_bag <- randomForest(log(wage) ~ age + selfemp + numChildren + educ + school +
tenure + fullTime + unionized + firmSize + marstat +
urban + region + hazardous + teamwork,

data = wages,
na.action = na.omit,
mtry = 14,# Bagging: m = p
importance = TRUE)

87

Bagging and Random Forests Application

wage_rf <- randomForest(log(wage) ~ age + selfemp + numChildren + educ + school +
tenure + fullTime + unionized + firmSize + marstat +
urban + region + hazardous + teamwork,

data = wages,
na.action = na.omit,
mtry = 4, # RF: m = sqrt(p)
importance = TRUE)

88

Bagging and Random Forests Application

3 4 5 6 7 8 9 10

3
4

5
6

7
8

9
10

Bagging model

Predicted values

Tr
ue

 o
ut

co
m

e

RMSE = 0.24

3 4 5 6 7 8 9 10

3
4

5
6

7
8

9
10

Random Forest model

Predicted values

Tr
ue

 o
ut

co
m

e

RMSE = 0.26

89

Variable importance measure

• We can’t interpret either bagged of Random Forest models using a single
tree

• Instead, we can calculate statistics that measure the importance of each
feature the classification/prediction task

• For each variable, we measure how the following concepts change for each
predictor, averaged across all 𝐵 trees used in the model

• 1. Decrease in prediction accuracy (MSE; error rate)

• 2. Increase in node purity (RSS; Gini)

• Large values → important predictor

90

Variable importance plot for the wages data.

varImpPlot(wage_rf, main = "Variable importance, Random Forest Model", type = 2)

selfemp
school
unionized
urban
marstat
fullTime
firmSize
age
region
numChildren
teamwork
hazardous
educ
tenure

0 10 20 30 40

Variable importance, Random Forest Model

IncNodePurity

91

Application – Civil War Onset

Can we predict the onset of civil war?

Prediction of the onset of civil war is a critical issue for policymakers who must
try to anticipate conflicts and find ways to prevent or contain them. Existing
approaches for predicting the start of wars are very poor, not least because
they have tended to use quantitative methods that are unnecessarily restrictive.
Muchlinski et al (2016) use Random Forest models to try to improve on the
current state of the art.

• 𝑌𝑖𝑡 = 1 if a civil war started in country 𝑖 in year 𝑡 (very unbalanced, only one
war year for every 100 peace years)

• 𝑁 = 7141 country-year observations
• 𝑋𝑖,𝑡 is a matrix of 88 predictor variables

92

Application – Civil War Onset

93

Application – Civil War Onset

94

Summary

• Non-linearity is everywhere! We should not ignore it.

• There are many different ways to estimate non-linear models, all of which
require us to make a large number of analysis choices

• Decision trees are simple and interpretable models for regression and
classification. However they are often not competitive with other methods
in terms of prediction accuracy.

• Bagging and random forests are good methods for improving the prediction
accuracy of trees. They work by growing many trees on the training data and
then combining the predictions of the resulting ensemble of trees.

95

	Moving Beyond Linearity
	Tree-based Methods
	Bagging
	Random Forests

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.85:
	0.84:
	0.83:
	0.82:
	0.81:
	0.80:
	0.79:
	0.78:
	0.77:
	0.76:
	0.75:
	0.74:
	0.73:
	0.72:
	0.71:
	0.70:
	0.69:
	0.68:
	0.67:
	0.66:
	0.65:
	0.64:
	0.63:
	0.62:
	0.61:
	0.60:
	0.59:
	0.58:
	0.57:
	0.56:
	0.55:
	0.54:
	0.53:
	0.52:
	0.51:
	0.50:
	0.49:
	0.48:
	0.47:
	0.46:
	0.45:
	0.44:
	0.43:
	0.42:
	0.41:
	0.40:
	0.39:
	0.38:
	0.37:
	0.36:
	0.35:
	0.34:
	0.33:
	0.32:
	0.31:
	0.30:
	0.29:
	0.28:
	0.27:
	0.26:
	0.25:
	0.24:
	0.23:
	0.22:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

