
Day 5: Classification

ME314: Introduction to Data Science and Machine Learning

Jack Blumenau and Kenneth Benoit

15 July 2024

1



Roadmap

What have we done so far?

1. Working with data

2. Supervised learning – linear regression

Where are we going?

1. Supervised learning – classification

2. Non-linear and tree-based methods

3. Tools for selecting between models

4. Unsupervised learning

5. Text analysis (next week)
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Motivation

• Last lecture, we considered ways of predicting quantitative responses using
linear regression

• Today, we focus on predicting qualitative responses using a variety of
methods

• Many interesting applications require us to classify observations into
different groups

• Will an individual buy, or not buy, a product?
• Will a business file for bankcruptcy?
• Will a candidate win an election?

• Our goal is to build models that can make accurate classifications on such
tasks
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Day 5 Outline

Classification

The Linear Probability Model

Logistic Regression

Multinomial Classification

Characterizing performance of classifiers
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Running Example

Who will win this match?
Prediction of sports results is a key application of data science methods. Often,
we are interested in qualitative and discrete outcomes – such as whether a
given team will win a match – rather than quantitative outcomes. For example,
we might be interested in predicting whether the home team of a Premier
League football match will win.

• Unit of analysis: 380 Premier League football matches from the 2021-22
season.

• Outcome (Y): home_win, equal to 1 if the home team won the match, and 0
otherwise

• Predictors (X): The current position of the home and away teams in the
league; the number of red cards received by each team; etc
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Running Example

glimpse(results)

## Rows: 380
## Columns: 16
## $ HomeTeam <chr> "Brentford", "Man United", "Burnley", "Chelsea", ~
## $ AwayTeam <chr> "Arsenal", "Leeds", "Brighton", "Crystal Palace",~
## $ Date <date> 2021-08-13, 2021-08-14, 2021-08-14, 2021-08-
14, ~
## $ outcome <fct> Home win, Home win, Away win, Home win, Home win,~
## $ home_win <lgl> TRUE, TRUE, FALSE, TRUE, TRUE, TRUE, TRUE, FALSE,~
## $ away_win <lgl> FALSE, FALSE, TRUE, FALSE, FALSE, FALSE, FALSE, T~
## $ draw <lgl> FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, FALSE, ~
## $ home_goals <dbl> 2, 5, 1, 3, 3, 1, 3, 0, 2, 1, 2, 2, 0, 2, 5, 2, 1~
## $ away_goals <dbl> 0, 1, 2, 0, 1, 0, 2, 3, 4, 0, 0, 0, 0, 2, 0, 0, 1~
## $ home_reds <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ away_reds <dbl> 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0~
## $ league_position_home <dbl> 15.5, 15.5, 5.5, 15.5, 15.5, 15.5, 15.5, 5.5, 5.5~
## $ league_position_away <dbl> 5.5, 5.5, 15.5, 5.5, 5.5, 5.5, 5.5, 15.5, 15.5, 5~
## $ league_position_diff <dbl> 10.0, 10.0, -10.0, 10.0, 10.0, 10.0, 10.0, -
10.0,~
## $ last_match_away <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 7, 9, 8, 8, 8, 9~
## $ last_match_home <dbl> 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 8, 8, 8, 8, 7, 8, 9~ 6



Running Example

table(results$outcome, results$home_win)

##
## FALSE TRUE
## Away win 129 0
## Draw 88 0
## Home win 0 163

7



Classification



Classification

• Qualitative variables take values in an unordered set 𝒞, such as: eye color
∈ {brown,blue,green}; email ∈ {spam, ham}; football results ∈ {away
win,draw,home win}.

• Given a feature vector 𝑋 and a qualitative response 𝑌 taking values in the
set 𝒞, the classification task is to build a function ℱ(𝒳) that takes as
input the feature vector 𝑋 and predicts its value for 𝑌 ; i.e. ℱ(𝒳) ∈ 𝒞.
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Classification

• Often we are more interested in estimating the probabilities that 𝑋 belongs
to each category in 𝒞.

• For example, it is sometimes more valuable to have an estimate of the
probability that an insurance claim is fraudulent, than a classification
fraudulent or not.

• A successful gambling strategy, for instance, requires placing bets on
outcomes to which you believe the bookmakers have assigned incorrect
probabilities. Knowing the most likely outcome is not enough!
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Example
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Example
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Example

• These plots suggest that we have some information that could be used to
predict match outcomes

• Which methods are suitable for this task, given the nature of the outcome
variable?
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The Linear Probability Model



Can we just use Linear Regression?

Suppose for the home-win classification task we code

𝑌 = { 0 if 𝐷𝑟𝑎𝑤 or 𝐴𝑤𝑎𝑦𝑊𝑖𝑛
1 if 𝐻𝑜𝑚𝑒𝑊𝑖𝑛.

Can we simply perform a linear regression of Y on X and classify as Yes if
𝑌 > 0.5?

• In this case of a binary outcome, linear regression can do a reasonable job
as a classifier!

• Since in the population 𝐸(𝑌 |𝑋 = 𝑥) = 𝑃𝑟(𝑌 = 1|𝑋 = 𝑥), we might
think that regression is perfect for this task.

• However, linear regression applied to limited dependent variables has some
undesirable properties as a classifier.
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Linear Probability Model

The linear regression for binary outcome variables is known as the linear
probability model:

Linear Probability Model

𝐸[𝑌 |𝑋1, 𝑋2, ..., 𝑋𝑘] = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘
𝑃𝑟(𝑌 = 1|𝑋1, 𝑋2, ...) = 𝛽0 + 𝛽1𝑋1 + 𝛽2𝑋2 + ... + 𝛽𝑘𝑋𝑘

Advantages:

• We can use a well-known model for a new class of phenomena
• Easy to interpret the marginal effects of 𝑋 variables

Disadvantages:

• The linear model assumes a continuous dependent variable, if the
dependent variable is binary we run into problems.
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Linear Probability Model – Advantages

Let’s estimate a standard linear regression model using OLS for the football data:

mod <- lm(home_win ~ league_position_diff, data = results)

##
## ================================
## Model 1
## --------------------------------
## (Intercept) 0.43 ***
## (0.02)
## league_position_diff 0.03 ***
## (0.00)
## --------------------------------
## R^2 0.25
## Adj. R^2 0.25
## Num. obs. 380
## ================================
## *** p < 0.001; ** p < 0.01; * p < 0.05
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Linear Probability Model – Advantages

• In the LPM, ̂𝛽1 estimates the change in the probability that 𝑌 = 1
associated with a unit increase in X

• An increase of 1 league position is associated with a .03 increase in the
probability of a home win

• For equally placed teams (difference in league positions = 0), the probability
of a home win is .43 (remember draws!)
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Linear Probability Model – Disadvantages

Problems with Linear Probability Model

Predictions, ̂𝑌 , are interpreted as probability for 𝑌 = 1
• 𝑃(𝑌 = 1) = ̂𝑌 = 𝛽0+𝛽1𝑋

• Can be above 1 if 𝑋 is large enough

• Can be below 1 if 𝑋 is small enough

17



Linear Probability Model – Disadvantages
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Problem: linear regression can predict probabilities < 0 and > 1.
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Linear Probability Model – Disadvantages

Now suppose we have a response variable with three possible values. A patient
presents at a hospital, and we must classify them according to their symptoms.

𝑌 =
⎧{
⎨{⎩

1 if 𝑠𝑡𝑟𝑜𝑘𝑒;
2 if 𝑑𝑟𝑢𝑔 𝑜𝑣𝑒𝑟𝑑𝑜𝑠𝑒;
3 if 𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐 𝑠𝑒𝑖𝑧𝑢𝑟𝑒.

• This coding suggests an ordering, and in fact implies that the difference
between 𝑠𝑡𝑟𝑜𝑘𝑒 and 𝑑𝑟𝑢𝑔 𝑜𝑣𝑒𝑟𝑑𝑜𝑠𝑒 is the same as between
𝑑𝑟𝑢𝑔 𝑜𝑣𝑒𝑟𝑑𝑜𝑠𝑒 and 𝑒𝑝𝑖𝑙𝑒𝑝𝑡𝑖𝑐 𝑠𝑒𝑖𝑧𝑢𝑟𝑒.

• Linear regression is not appropriate here!
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Linear Probability Model – Disadvantages

Problems:

1. Linear regression can predict probabilities < 0 and > 1.
2. Linear probability models don’t work at all when we have more than two

(unordered) categories

3. OLS requires homoskedastic residuals, with 𝐸(𝑢𝑖|𝑋𝑖) = 0. In the LPM the
errors will have non-constant variance (thus messing up our standard
errors)

Implication:

• We want a model that will provide predictions restricted to the 0-1 interval!

• Logistic regression is well suited to this task
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Logistic Regression



Functions

A function maps values from 𝑋 onto exactly one value of 𝑌 . We would write a
function of 𝑋 as 𝑓(𝑋)
We can think of a function as a rule which tells us how to transform 𝑋, the
argument of the function, to another specific value.

For example:

• 𝑓(𝑋) = 𝑋2 (quadratic function)

• 𝑓(𝑋) = 𝑙𝑜𝑔(𝑋) (logarithmic function)

• 𝑓(𝑋) = 𝛽0 + 𝛽1𝑋 (linear function)

For example, if we were to give the value 𝑋 = 2 to the following function:

𝑓(𝑋) = 2 + 3 ⋅ 𝑋
𝑓(𝑋) = 2 + 3 ⋅ 2
𝑓(𝑋) = 8
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Link functions

With a binary dependent variable:

• We want to model the probability of an outcome

• Probabilities can be a maximum of 1 and a minimum of 0

• → we need a function that only returns values between 0 and 1.

Link functions
Rather than a model like this:

𝑃(𝑌𝑖 = 1) = 𝛼 + 𝛽1𝑋1𝑖

We can instead have a model like this:

𝑃(𝑌𝑖 = 1) = 𝑓(𝛼 + 𝛽1𝑋1𝑖)

Where F( ⋅ ) is a function which never returns values below 0 or above 1
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Logit and probit models

There are two functions that we might use:

Logit and probit

• The logit model, which is based on the cumulative logistic distribution (Δ)

• The probit model, which is based on the cumulative normal distribution (Φ)
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Implications:

• We now have models which provide predictions that can be interpreted as
probabilities

• Both will give very similar results but we focus on the logit model (it is a little more
convenient)
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Logistic Regression Model

The logit model is also known as the logistic regression model, and has the
following features:

• 𝑌 is a binary response variable, with values 0 and 1

• 𝑋1, … , 𝑋𝑘 are 𝑘 explanatory variables of any type

• For each observation 𝑖, the following equation holds for 𝑃(𝑌𝑖 = 1) = 𝜋𝑖:

log(Odds𝑖) = log ( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛼 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖

where 𝛼 and 𝛽1, … , 𝛽𝑘 are the unknown parameters of the model, to be
estimated from data

Logistic regression models the log-odds that Y belongs to a given category.
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Model for the probabilities

• Although the model is written first for the log-odds, it also implies a model
for the probabilities, 𝜋𝑖:

𝜋𝑖 = exp(𝛼 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖)
1 + exp(𝛼 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖)

• This is always between 0 and 1

• The plots on the next slide give examples of

𝜋 = exp(𝛼 + 𝛽𝑋)
1 + exp(𝛼 + 𝛽𝑋)

for a simple logistic model with one continuous 𝑋
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Probabilities from a logistic model
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Linear versus Logistic Regression
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Logistic regression ensures that our estimate for 𝑝(𝑋) lies between 0 and 1.

28



Maximum Likelihood

• As with linear regression, the coefficients – 𝛼 and 𝛽 – are unknown and
need to be estimated from training data

• We use maximum likelihood estimation (MLE) to estimate the parameters.

• Intuition: What are the values for 𝛼 and 𝛽 that generate predicted
probabilities, ̂𝑌𝑖 for each training observation that are as close as possible
to the realised outcomes, 𝑌𝑖?
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Maximum Likelihood

• 𝜋𝑖 is the probability that observation 𝑖 has 𝑌 = 1:

𝜋𝑖 = exp(𝛼 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖)
1 + exp(𝛼 + 𝛽1𝑋1𝑖 + ⋯ + 𝛽𝑘𝑋𝑘𝑖)

• The likelihood function for logit regression is:

ℓ(𝛽0, 𝛽) = ∏
𝑖∶𝑦𝑖=1

̂𝜋𝑖 ∏
𝑖∶𝑦𝑖=0

(1 − ̂𝜋𝑖).

• This likelihood gives the probability of the observed zeros and ones in the
data, given values for 𝛽0, 𝛽1, ...𝛽𝑘.

• That is, we want to pick values of 𝛽0, 𝛽1, ...𝛽𝑘 to maximize the likelihood of
the observed data.
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Maximum Likelihood - An analogy

• How do you find the latitude and longitude of a mountain peak if you can’t
see very far?

1. Start somewhere.

2. Look around for the best way to go up.

3. Go a small distance in that direction.

4. Look around for the best way to go up.

5. Go a small distance in that direction.

6. ⋯

• This is what we do when we estimate the binary logistic regression model. 31



Implementation

logistic_model <- glm(home_win ~ league_position_diff,
data = results,
family = binomial)
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Implementation

summary(logistic_model)

##
## Call:
## glm(formula = home_win ~ league_position_diff, family = binomial,
## data = results)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -0.39944 0.12214 -3.270 0.00107 **
## league_position_diff 0.14856 0.01697 8.754 < 2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 519.09 on 379 degrees of freedom
## Residual deviance: 412.18 on 378 degrees of freedom
## AIC: 416.18
##
## Number of Fisher Scoring iterations: 4
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Interpretation

Some aspects of interpretation are straightforward:

• The sign of the coefficients indicate the direction of the associations

• 𝛽league_position_diff > 0 → bigger difference in league position between home
and away teams increases probability of a home win

• The significance of the coefficients are still determined by
̂𝛽

𝑆𝐸( ̂𝛽)
• We can reject the null that the relationship between league position and the
home team winning is zero
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Interpretation

• It is possible to interpret the coefficients directly…

• → an increase of one league position is associated with an increase of
𝛽league_position_diff = 0.15 in the log-odds of the home team winning

• → the log-odds of the home team winning are 𝛼 = −.4 when the league
position difference is zero

• …but no-one thinks in terms of log-odds!

• You do not need to be able to interpret the coefficients’ magnitude for the
assessment
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Calculating predicted probabilities

• Just as we were interested in fitted values for linear regression, we are often
interested in fitted probabilities for logistic regression

• The logistic regression gives us an equation for calculating the fitted
log-odds that 𝑌 = 1 for a given set of X values:

̂log( 𝜋𝑖
1 − 𝜋𝑖

) = 𝛼 + ̂𝛽1 ∗ 𝑋1 + ̂𝛽2 ∗ 𝑋2

• To recover the fitted probability that 𝑌 = 1, we use

̂𝜋𝑖 = exp( ̂𝛼 + ̂𝛽1𝑋1𝑖 + ̂𝛽2𝑋2𝑖)
1 + exp( ̂𝛼 + ̂𝛽1𝑋1𝑖 + ̂𝛽2𝑋2𝑖)

for selected values of the explanatory variables 𝑋1, … , 𝑋𝑘
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Calculating predicted probabilities

• What is our estimated probability of a home win when the home team is 10
places above the away team in the league?

̂𝑝(𝑋) = exp( ̂𝛼 + ̂𝛽1𝑋1𝑖)
1 + exp( ̂𝛼 + ̂𝛽1𝑋1𝑖)

= 𝑒𝑥𝑝(−0.4 + 0.15 × 10)
1 + 𝑒𝑥𝑝(−0.4 + 0.15 × 10) = 0.75

• How about when the home team is 5 places below the away team in the
league?

̂𝑝(𝑋) = exp( ̂𝛼 + ̂𝛽1𝑋1𝑖)
1 + exp( ̂𝛼 + ̂𝛽1𝑋1𝑖)

= 𝑒𝑥𝑝(−0.4 + 0.15 × −5)
1 + 𝑒𝑥𝑝(−0.4 + 0.15 × −5) = 0.24
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Calculating predicted probabilities

In R, we can calculate the predicted probabilities using the following:
predict(logistic_model, newdata = data.frame(league_position_diff = 10),

type = "response")

## 1
## 0.7476565

predict(logistic_model, newdata = data.frame(league_position_diff = -5),
type = "response")

## 1
## 0.2419103

where type = "response" tells R to calculate predicted probabilities (rather
than fitted log-odds)
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Calculating predicted probabilities

We can also calculate predicted probabilities for every match in our data:
results$p_home_win <- predict(logistic_model, type = "response")

summary(results$p_home_win)

## Min. 1st Qu. Median Mean 3rd Qu. Max.
## 0.03834 0.21572 0.40145 0.42895 0.65486 0.91858
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Calculating predicted probabilities

results[which.max(results$p_home_win),
c("HomeTeam", "AwayTeam",

"league_position_home", "league_position_away",
"p_home_win",
"home_goals", "away_goals")]

## # A tibble: 1 x 7
## HomeTeam AwayTeam league_position_home league_position_away p_home_win
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Chelsea Norwich 20 1 0.919
## home_goals away_goals
## <dbl> <dbl>
## 1 7 0
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Calculating predicted probabilities

results[which.min(results$p_home_win),
c("HomeTeam", "AwayTeam",

"league_position_home", "league_position_away",
"p_home_win",
"home_goals", "away_goals")]

## # A tibble: 1 x 7
## HomeTeam AwayTeam league_position_home league_position_away p_home_win
## <chr> <chr> <dbl> <dbl> <dbl>
## 1 Norwich Man City 1 20 0.0383
## home_goals away_goals
## <dbl> <dbl>
## 1 0 4
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Multiple logistic regression

It is straightforward to extend the logistic model to include multiple predictors:

𝑙𝑜𝑔 ( 𝑝(𝑋)
1 − 𝑝(𝑋)) = 𝛽0 + 𝛽1𝑋1 + … + 𝛽𝑝𝑋𝑝

𝑝(𝑋) = 𝑒𝛽0+𝛽1𝑋1+…+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+…+𝛽𝑝𝑋𝑝
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Implementation

logistic_model_2 <- glm(home_win ~ league_position_diff + home_reds + away_reds,
data = results,
family = binomial)

45



Implementation

##
## =================================
## Model 1
## ---------------------------------
## (Intercept) -0.38 **
## (0.13)
## league_position_diff 0.15 ***
## (0.02)
## home_reds -2.60 *
## (1.08)
## away_reds 0.92
## (0.51)
## ---------------------------------
## AIC 405.57
## BIC 421.33
## Log Likelihood -198.79
## Deviance 397.57
## Num. obs. 380
## =================================
## *** p < 0.001; ** p < 0.01; * p < 0.05

46



Interpretation

1. Differences in league position increase the probability that the home team
wins

2. If the home team receives a red card, they are significantly less likely to win
(home_reds < 0)

3. If the away team receives a red card, the home team is somewhat more
likely to win (away_reds > 0, but 𝑝 > 0.05)
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Interpretation

predict(logistic_model_2,
newdata = data.frame(league_position_diff = 0,

home_reds = c(0,1),
away_reds = 0),

type = "response")

## 1 2
## 0.40527887 0.04809615

Implication: For equally matched teams, the home team receiving a red card
reduces their probability of winning from .4 to .05.
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Example

South African Heart Disease
Public health policy often requires predicting which types of people are at risk
of disease, and which individual-level characteristics are important risk factors
for diseases. In this example, we use logistic regression to predict the
occurance of coronary heart disease from a set of demographic factors and
health measures. This data is drawn from a study in South Africa in the 1980s
which aimed to evaluate the relative strengths and directions of different risk
factors.

• Unit of analysis: 303 individuals

• Outcome (Y): AHD, equal to 1 if the individual has coronary heart disease (as
measured from an aniographic test), and 0 otherwise

• Predictors (X): 13 variables measuring demographics and heart and lung
function measurements
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Example: South African Heart Disease

## Rows: 303
## Columns: 14
## $ Age <dbl> 63, 67, 67, 37, 41, 56, 62, 57, 63, 53, 57, 56, 56, 44, 52, ~
## $ ChestPain <chr> "typical", "asymptomatic", "asymptomatic", "nonanginal", "no~
## $ RestBP <dbl> 145, 160, 120, 130, 130, 120, 140, 120, 130, 140, 140, 140, ~
## $ Chol <dbl> 233, 286, 229, 250, 204, 236, 268, 354, 254, 203, 192, 294, ~
## $ Fbs <dbl> 1, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, ~
## $ RestECG <dbl> 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, 2, 2, 0, 0, 0, 0, 0, 0, 0, ~
## $ MaxHR <dbl> 150, 108, 129, 187, 172, 178, 160, 163, 147, 155, 148, 153, ~
## $ ExAng <dbl> 0, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ~
## $ Oldpeak <dbl> 2.3, 1.5, 2.6, 3.5, 1.4, 0.8, 3.6, 0.6, 1.4, 3.1, 0.4, 1.3, ~
## $ Slope <dbl> 3, 2, 2, 3, 1, 1, 3, 1, 2, 3, 2, 2, 2, 1, 1, 1, 3, 1, 1, 1, ~
## $ Ca <dbl> 0, 3, 2, 0, 0, 0, 2, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, ~
## $ Thal <chr> "fixed", "normal", "reversable", "normal", "normal", "normal~
## $ AHD <dbl> 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, ~
## $ Female <lgl> FALSE, FALSE, FALSE, FALSE, TRUE, FALSE, TRUE, TRUE, FALSE, ~
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heart_logit <- glm(AHD ~ . , data = SAheart, family = binomial)
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summary(heart_logit)

##
## Call:
## glm(formula = AHD ~ ., family = binomial, data = SAheart)
##
## Coefficients:
## Estimate Std. Error z value Pr(>|z|)
## (Intercept) -2.536439 2.711852 -0.935 0.349625
## Age -0.012296 0.024664 -0.499 0.618120
## ChestPainnonanginal -1.804627 0.492607 -3.663 0.000249 ***
## ChestPainnontypical -0.935649 0.556725 -1.681 0.092835 .
## ChestPaintypical -2.006802 0.652608 -3.075 0.002105 **
## RestBP 0.023981 0.011110 2.159 0.030889 *
## Chol 0.004930 0.003944 1.250 0.211306
## Fbs -0.610758 0.599184 -1.019 0.308052
## RestECG 0.255433 0.189565 1.347 0.177829
## MaxHR -0.021281 0.010821 -1.967 0.049224 *
## ExAng 0.739431 0.434687 1.701 0.088931 .
## Oldpeak 0.353095 0.230102 1.535 0.124903
## Slope 0.670508 0.371616 1.804 0.071184 .
## Ca 1.269290 0.271304 4.678 2.89e-06 ***
## Thalnormal -0.011430 0.795090 -0.014 0.988530
## Thalreversable 1.429947 0.783279 1.826 0.067912 .
## FemaleTRUE -1.431422 0.513185 -2.789 0.005282 **
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## (Dispersion parameter for binomial family taken to be 1)
##
## Null deviance: 409.95 on 296 degrees of freedom
## Residual deviance: 194.83 on 280 degrees of freedom
## (6 observations deleted due to missingness)
## AIC: 228.83
##
## Number of Fisher Scoring iterations: 6
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Predicted probabilities

How does the probability of having heart disease vary as a function of age and
maximum heart rate?

We can generate predicted probabilities via:

𝑝(𝑋) = 𝑒𝛽0+𝛽1𝑋1+…+𝛽𝑝𝑋𝑝

1 + 𝑒𝛽0+𝛽1𝑋1+…+𝛽𝑝𝑋𝑝

where we set all variables to their sample means or modes, and then vary the
values of Age and MaxHR
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Predicted probabilities

vals_age <- data.frame(Age = 29:77,
ChestPain = "asymptomatic",
RestBP = mean(SAheart$RestBP),
Chol = mean(SAheart$Chol),
Fbs = mean(SAheart$Fbs),
RestECG = mean(SAheart$RestECG),
MaxHR = mean(SAheart$MaxHR),
ExAng = mean(SAheart$ExAng),
Oldpeak = mean(SAheart$Oldpeak),
Slope = mean(SAheart$Slope),
Ca = mean(SAheart$Ca, na.rm = TRUE),
Thal = "normal",
Female = FALSE)
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Predicted probabilities

vals_maxhr <- data.frame(Age = mean(SAheart$Age),
ChestPain = "asymptomatic",
RestBP = mean(SAheart$RestBP),
Chol = mean(SAheart$Chol),
Fbs = mean(SAheart$Fbs),
RestECG = mean(SAheart$RestECG),
MaxHR = 71:202,
ExAng = mean(SAheart$ExAng),
Oldpeak = mean(SAheart$Oldpeak),
Slope = mean(SAheart$Slope),
Ca = mean(SAheart$Ca, na.rm = TRUE),
Thal = "normal",
Female = FALSE)
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Predicted probabilities

age_probs <- predict(heart_logit,
newdata = vals_age,
type = "response",
se.fit = TRUE)

maxhr_probs <- predict(heart_logit,
newdata = vals_maxhr,
type = "response",
se.fit = TRUE)
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Predicted probabilities
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Break
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Multinomial Classification



Multinomial Logistic Regression

• So far we have discussed logistic regression with two classes.

• It is easily generalized to more than two classes.

• Here there is a non-linear function for the probability of each class.

• Multiclass logistic regression is also referred to as multinomial regression.
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Multinomial Logistic Regression

The log-odds for each non-reference category 𝑗 = 1, … , 𝐶 − 1 against the
reference category 0 depends on the values of the explanatory variables through:

log( 𝜋(𝑗)
𝑖

𝜋(0)
𝑖

) = 𝛼(𝑗) + 𝛽(𝑗)
1 𝑋1𝑖 + ⋯ + 𝛽(𝑗)

𝑘 𝑋𝑘𝑖

for each 𝑗 = 1, … , 𝐶 − 1 where 𝛼(𝑗) and 𝛽(𝑗)
1 , … , 𝛽(𝑗)

𝑘 are unknown
population parameters
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Multinomial Logistic Regression

• Multinomial logit regression can be estimated using the glmnet package in
R

• Because there are many more parameters to estimate versus a binary logit
model, multinomial models typically take much longer to estimate
(particularly if 𝑁 or 𝑃 are large)

• As before, inference can be performed directly on the estimated coefficients

• As before, the coefficients are hard to interpret and so calculating predicted
probabilities is normally preferable
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Naive Bayes Classifier

• Logistic regression involves modelling 𝑃(𝑌 = 𝑘|𝑋) using the logistic
distribution.

• An alternative approach to estimating the conditional distribution of 𝑌
given 𝑋 is to use Bayes’ rule

• Bayes’s rule tells us that:

𝑃(𝑌 = 𝑘|𝑋𝑖 = 𝑥) ∝ 𝑃(𝑌 )𝑃(𝑋𝑖 = 𝑥|𝑌 = 𝑘)

where:

• 𝑃(𝑌 ) is the prior probability of the outcome (i.e. the probability of a given
class before we see any data)

• 𝑃(𝑋𝑖 = 𝑥|𝑌 = 𝑘) is the likelihood or conditional probability of 𝑋𝑖 given
the class 𝑌

Our goal is therefore to estimate these probabilities in order to calculate the
conditional probability that we care about: 𝑃(𝑌 = 𝑘|𝑋) 63



Naive Bayes Classifier

• 𝑃(𝑌 )
• the probability that a randomly chosen observation is in class 𝑘
• can be estimated from the sample proportions of 𝑘

• 𝑃(𝑋𝑖 = 𝑥|𝑌 = 𝑘)
• the probability of a randomly chosen observation in class 𝑘 having 𝑋𝑖 = 𝑥
• higher when it is likely that an observation in 𝑘 has 𝑋𝑖 = 𝑥
• lower when it is unlikely that an observation in 𝑘 has 𝑋𝑖 = 𝑥
• Because 𝑋𝑖 is a vector of covariates, we need to work out this probability from
a multivariate probability distribution

• Or we can cheat and use the Naive Bayes classifier
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Naive Bayes Classifier

• The key simplification step here is to assume that features are independent

• While this assumption is pretty heroic and generally not true, it significantly
simplifies the estimation.

• The probability of an observation, 𝑌𝑖, being assigned to a class, 𝑘:

𝑃(𝑌𝑖 = 𝑘|𝑋𝑖) ∝ 𝑃(𝑘)
𝐽

∏
𝑗=1

𝑃(𝑥𝑗|𝑘)

• We then assign the observation to 𝑘th class for which it has the highest
posterior probability:

̂𝑌𝑖 = argmax
𝑘∈{1,...,𝑘}

𝑃(𝑘)
𝐽

∏
𝑗=1

𝑃(𝑥𝑗|𝑘)
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Naive Bayes Classifier

• Despite the strong assumptions it makes, NB classifiers often outperform
far more sophisticated alternatives.

• Naive Bayes is especially appropriate when the dimension 𝑝 of the feature
space is high

• We will come back to Naive Bayes in our text classification lecture next week
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Naïve Bayes example

library(e1071)

nb_model <- naiveBayes(home_win ~ league_position_diff + home_reds + away_reds,
data = results)

results$p_home_win_nb <- predict(nb_model, newdata = results, type = "raw")[,2]
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Naïve Bayes example
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Naïve Bayes Multiclass example

library(e1071)

nb_model_multiclass <- naiveBayes(outcome ~ home_reds + away_reds +
HomeTeam + AwayTeam,

data = results)

results$pred_outcome_nb <- predict(nb_model_multiclass, newdata = results)

table(results$pred_outcome_nb, results$outcome)

##
## Away win Draw Home win
## Away win 81 21 10
## Draw 2 5 3
## Home win 46 62 150
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Other classification approaches

1. Tree-based methods

• Partition the covariate space into discrete regions
• Classify observations into the modal outcome class in each region
• More on these tomorrow!

2. Support Vector Machines

• Estimate a set of (non-linear) boundaries through the covariate space that
separate between classes

• Classify observations according to which side of the boundaries they fall

3. Deep learning/Neural networks

• Derive new features which are non-linear functions of existing covariates
• Use these transformations as inputs to a (generalised) linear model for Y
• Classify new observations by applying the transformations and predicting from
the fitted model
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Other classification approaches

• These methods, in different ways, allow for complex non-linearities in the
relationship between predictors and outcome and also allow for
interactions between predictors.

• Success tends to be somewhat task specific, but there is also often little
variation is success (at least for simple problems).
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Characterizing performance of
classifiers



How good is our football classifier?

We are often most interested in whether we get each classification decision
“right”, rather than how close we came to being right.
results$home_win_pred <- results$p_home_win > .5

table(Prediction = results$home_win_pred,
Result = results$home_win)

## Result
## Prediction FALSE TRUE
## FALSE 168 64
## TRUE 49 99

(168 + 99)/380

## [1] 0.7026316

Is this good?
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The naïve guess

Best prediction without a model
Suppose you had to come up with a prediction of whether any home team
would win without using a statistical model. What would you predict?

• One reasonable guess would be just to use the mean outcome in your data

• We can get ̂𝜋, unconditional on predictors, by taking the mean of 𝑌
• If ̂𝜋 > 0.5 ∶

• 𝑃𝑟(𝑌 = 1) > 𝑃𝑟(𝑌 = 0)

• 1’s in our binary DV are more common than 0’s

• If ̂𝜋 < 0.5 ∶
• 𝑃𝑟(𝑌 = 1) < 𝑃𝑟(𝑌 = 0)

• 1’s in our binary DV are less common than 0’s
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The naïve guess

The naïve guess
The naïve guess is the most common outcome of the dependent variable

In our data, home_win is the dependent variable:

mean(results$home_win)

## [1] 0.4289474

Thus, 𝑃(𝑌 = 1) < 𝑃(𝑌 = 0).

→ the naïve guess is therefore 0, that the home team will not win.
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The naïve guess

results$home_win_naive <- FALSE

mean(results$home_win_naive == results$home_win)

## [1] 0.5710526

• Even making the simplest possible guess, we get an accuracy of 57%

• Thankfully our logit regression does better than that!

• The general point here is that classification accuracy can be misleading…
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COVID confusion

How accurate are PCR tests? (Ai et al., Radiology, 2020)

• True COVID status = measured by an x-ray + doctor
• Predicted COVID status = people swabbing themselves with a PCR test

True COVID Status
Does not have COVID Has COVID Total

Predicted Negative Test 105 308 413
COVID Status Positive test 21 580 601

Total 126 888 1014

• Error rate = 21+308
1014 = 32.4%

• Accuracy = 105+580
1014 = 67.5%

But, note that the error-rates are different for the healthy and the sick!

• Proportion of healthy classified as having COVID = 21
126 = 16.7%

• Proportion of sick classified as not having COVID = 308
888 = 34.7%
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Types of errors

• False positive rate: The fraction of negative examples that are classified as
positive – 16.7% in this example.

• False negative rate: The fraction of positive examples that are classified as
negative – 34.7% in this example.
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Sensitivity and specificity

• The performance of a classifier is often characterized in terms of sensitivity
and specificity.

• Here, the sensitivity is the percentage of sick people that are correctly
identified: 580

888 = 65.3%
• The specificity is the percentage of healthy people that are correctly
identified: 105

126 = 83.3%
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Which is best?

• Our prioritization of false-negative/false-positive rates will often depend on
the application

• For judicial decisions, maybe we’d prefer false negatives than false positives

• Would you rather put an innocent person in jail or let a guilty one go free?

• For COVID tests, we’d probably be more happy to accept false positives that
false negatives

• Would you rather isolate for no reason, or be coughed on by a sick person?
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Application

confusion_tab <- table(Prediction = results$home_win_pred,
Result = results$home_win)

confusion_tab

## Result
## Prediction FALSE TRUE
## FALSE 168 64
## TRUE 49 99

• Accuracy = 99+168
380 = 70.3%

• Sensitivity = 99
163 = 60.7%

• Specificity = 168
217 = 77.4%
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caret and confusionMatrix()
library(caret)
confusionMatrix(confusion_tab, positive = "TRUE")

## Confusion Matrix and Statistics
##
## Result
## Prediction FALSE TRUE
## FALSE 168 64
## TRUE 49 99
##
## Accuracy : 0.7026
## 95% CI : (0.6539, 0.7482)
## No Information Rate : 0.5711
## P-Value [Acc > NIR] : 8.627e-08
##
## Kappa : 0.386
##
## Mcnemar's Test P-Value : 0.1878
##
## Sensitivity : 0.6074
## Specificity : 0.7742
## Pos Pred Value : 0.6689
## Neg Pred Value : 0.7241
## Prevalence : 0.4289
## Detection Rate : 0.2605
## Detection Prevalence : 0.3895
## Balanced Accuracy : 0.6908
##
## 'Positive' Class : TRUE
##
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Errors and threshold

• We produced the confusion matrix above by classifying to home_win =
TRUE if

𝑃𝑟(𝐻𝑜𝑚𝑒𝑊𝑖𝑛|𝑋) ≥ 0.5

• We can change the two error rates by changing the threshold from 0.5 to
some other value in [0,1]:

𝑃𝑟(𝐻𝑜𝑚𝑒𝑊𝑖𝑛|𝑋) ≥ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑,
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Varying the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

For example, if we classify according to 𝑃𝑟(𝐻𝑜𝑚𝑒𝑊𝑖𝑛|𝑋) ≥ .2,
results$home_win_pred_tmp <- results$p_home_win > .2
confusionMatrix(table(results$home_win_pred_tmp, results$home_win),

positive = "TRUE")

## Confusion Matrix and Statistics
##
##
## FALSE TRUE
## FALSE 81 5
## TRUE 136 158
##
## Accuracy : 0.6289
## 95% CI : (0.5782, 0.6777)
## No Information Rate : 0.5711
## P-Value [Acc > NIR] : 0.01253
##
## Kappa : 0.3115
##
## Mcnemar's Test P-Value : < 2e-16
##
## Sensitivity : 0.9693
## Specificity : 0.3733
## Pos Pred Value : 0.5374
## Neg Pred Value : 0.9419
## Prevalence : 0.4289
## Detection Rate : 0.4158
## Detection Prevalence : 0.7737
## Balanced Accuracy : 0.6713
##
## 'Positive' Class : TRUE
## 83



Varying the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑

For example, if we classify according to 𝑃𝑟(𝐻𝑜𝑚𝑒𝑊𝑖𝑛|𝑋) ≥ .8,
results$home_win_pred_tmp <- results$p_home_win > .8
confusionMatrix(table(results$home_win_pred_tmp, results$home_win),

positive = "TRUE")

## Confusion Matrix and Statistics
##
##
## FALSE TRUE
## FALSE 213 137
## TRUE 4 26
##
## Accuracy : 0.6289
## 95% CI : (0.5782, 0.6777)
## No Information Rate : 0.5711
## P-Value [Acc > NIR] : 0.01253
##
## Kappa : 0.157
##
## Mcnemar's Test P-Value : < 2e-16
##
## Sensitivity : 0.15951
## Specificity : 0.98157
## Pos Pred Value : 0.86667
## Neg Pred Value : 0.60857
## Prevalence : 0.42895
## Detection Rate : 0.06842
## Detection Prevalence : 0.07895
## Balanced Accuracy : 0.57054
##
## 'Positive' Class : TRUE
## 84



Varying the 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
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ROC curve
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• The ROC plot displays both the true positive rate and the false positive rate
simultaneously (for different thresholds).

• Sometimes we use the AUC or area under the curve to summarize the
overall performance and to compare models.

• Higher AUC is good.
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Characterizing performance of classifiers

Predicted class
- or Null + or Non-null Total

True - or Null True Neg. (TN) False Pos.(FP) N
class + or Non-null False Neg. (FN) True Pos. (TP) P

Total N* P*

• “+’ ’ is “disease” or alternative (non-null) hypothesis (e.g. “home win”);
• “-’ ’ is “non-disease” or the null hypothesis (e.g. “away win or draw”).
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Performance measures for classifiers

Name Definition Synonyms

False Pos. rate FP/N Type I error, 1- Specificity
True Pos. rate TP/P 1 - Type II error, power, sensitivity, recall
Pos. Pred. value TP/P* Precision, 1-false discovery proportion
Neg. Pred. value TN/N*

• The denominators for the false positive and true positive rates are the
actual population counts in each class.

• The denominators for the positive predictive value and the negative
predictive value are the total predicted counts for each class.
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Summary

• Classification methods differ from regression methods because we are
interested in qualitative outcomes, rather than continuous ones

• Logistic regression is very popular for classification, particularly when the
number of classes is low (i.e. 𝑘 = 2)

• Naive Bayes is useful when 𝑝 is very large and is cheap to implement.

• Confusion matrices help us to assess the performance of our classifiers, but
we need to think carefully about which metrics are most informative for
each task

• (Football matches are hard to forecast)
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Midterm

• Released: this afternoon.

• Focus: mostly linear regression, a small amount on logistic regression.

• Deadline: Wednesday 27th July, 15.00.
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