
Lecture 12: Word
Embeddings and Large

Language Models
Jack Blumenau

ME314

Today’s lecture
Introduction to Word Embeddings
Estimating Word Embeddings
Using Word-Embeddings
Applications
Bias in Word-Embeddings
Large Language Models
Social Science Applications
Conclusion

http://localhost:7327/?print-pdf=#/introduction-to-word-embeddings
http://localhost:7327/?print-pdf=#/estimating-word-embeddings
http://localhost:7327/?print-pdf=#/using-word-embeddings
http://localhost:7327/?print-pdf=#/applications
http://localhost:7327/?print-pdf=#/bias-in-word-embeddings
http://localhost:7327/?print-pdf=#/large-language-models
http://localhost:7327/?print-pdf=#/social-science-applications
http://localhost:7327/?print-pdf=#/conclusion

Final assessment
Released at 6pm today (on Moodle)

Due 6pm Monday 29th June

Please work on the assessment alone

Good luck!

Introduction to Word
Embeddings

Learning from Context
Put these sentences into pairs on the basis of the similarity between the missing words

a. The concert was _____ and she was nearly moved to tears.

b. The _____ stood in the corner of the room.

c. They thought that the film was _____, particularly because the ending was so touching.

d. “What on earth is going on?”, _____ said.

e. _____ never knew how long it would last.

f. Sitting on the floor, beneath the _____, was a cat.

Learning from Context
Put these sentences into pairs on the basis of the similarity between the missing words

a. The concert was beautiful and she was nearly moved to tears.

b. The chair stood in the corner of the room.

c. They thought that the film was charming, particularly because the ending was so
touching.

d. “What on earth is going on?”, he said.

e. They never knew how long it would last.

f. Sitting on the floor, beneath the table, was a cat.

Even without seeing the words themselves, you (hopefully) were able to infer something
about their meaning from the words that surround them.

Sparse Representations of Words
Up until this point of the course, we have always implicitly used representations of words
that are sparse.

Words were represented as one-hot encoding, i.e. word-specific vectors that take the value
of 1 only for that word, and 0 for all others. E.g.

The problem with this representation is that they contain no notion of similarity between
words.

The dot product between two word vectors is zero:

This is true for any pair of words, which is clearly nonsense as some pairs of words are
more similar to each other than other pairs of words.

wdebt = []0, 0, 1, 0, . . . , 0wdeficit = []0, 0, 0, 1, . . . , 0

cos(θ) = wT
deficitwdebt =

wdeficit ⋅ wdebt

||wdeficit|| ||wdebt||
= 0

Problems with Sparse Word
Representations
Mechanical problems:

1. Similarity

Documents might have zero term overlap, but have nearly identical meanings

E.g. “Quantitative text analysis is very successful.” vs “Natural language processing
is tremendously effective.”

2. Classification/Dictionaries/Supervised scaling

We may know or learn that one word is connected to a concept, but that doesn’t tell
us anything about other similar words

If we learn that “turmeric” is highly predictive of the concept of interest, shouldn’t
we also learn something about “garlic”, “saffron”, and “ginger”?

3. Topic models/Unsupervised scaling

If “bank”, “economy”, “interest”, and “rates” have high probability under a topic,
shouldn’t “monetary” also have high probability?

Distributional Semantics
The distributional hypothesis: the meaning of a word can be derived from the
distribution of contexts in which it appears.

We can learn about the meaning of a word by investigating the distribution of words
that show up around the word

“You shall know a word by the company it keeps!” J.R. Firth (1957)

“The meaning of words lies in their use” Ludwig Wittgenstein (1953)

The hypothesis implies that words that appear in similar “contexts” will share similar
meanings

This simple (and old) idea is one of the most influential and successful ideas in modern
natural language processing

Word embedding approaches represent the distributional “meaning” of a word as a
vector in multidimensional space

Distributional Semantics
When a word appears in a text, its “context” is the set of words that appear nearby
(within a fixed-size window)

We use the many contexts of to build up a representation of

j

w w

pre keyword post

1 can be delivered for the banking industry in Europe . I

2 instance I am referring to banking . It is not only

3 that , if the second banking directive comes into force without

4 the future of the British banking industry within the European
Community

6 the Government expect the
second

banking directive to come into force

pre keyword post

1 during the passage of the Finance Bill , but I can

2 is referring to taxpayers ' finance and public sector funding ,

Word Embedding Overview
1. The meaning of each word is based on

the distribution of terms with which it co-
occurs

2. We represent this meaning using a vector
for each word

3. Vectors are constructed such that similar
words are close to each other in
“semantic” space

4. We build this space automatically by
seeing which words are close to one
another in texts⎢ ⎥ ⎢ ⎥

Dense Representations of Words
Our goal will be to build a dense vector for each word, chosen so that it is similar to
vectors of words that appear in similar contexts (measuring similarity as the dot product)

These representations are known as word embeddings because we “embed” words into a
low-dimensional space (low compared to the vocabulary size).

wdebt =

⎡⎢⎣ 0.73
0.04
0.07

−0.18
0.81

−0.97

⎤⎥⎦ wdeficit =

⎡⎢⎣ 0.63
.14
.02

−0.58
0.43

−0.66

⎤⎥⎦

⎢ ⎥ ⎢ ⎥
Advantages of Word Embeddings
Low-dimensional word embeddings offer three core advantages over simple word counts.
They:

1. Encode similarity between words

We no longer have word similarities of zero!

Each word is a vector, with the vectors of similar words closer together than vectors
of very different words

2. Allow for “automatic generalization”

Imagine that we discover “fantastic” is a good predictor of positive reviews, but we
never observe the word “extraordinary” in our training corpus

Because “fantastic” and “extraordinary” will have similar word vectors, we can share
information across words, and apply what we have learned about one word to our
understanding of another

Can lead to large performance gains for prediction and topic modelling tasks

3. Provide a measure of meaning

We will o#en be interested in the meaning of words as a quantity in its own right

Contrasting Approaches
The material today is different on several dimensions from the approaches on the course
so far:

Traditional
Unsupervised

Traditional
Supervised

Word Embeddings

Bag of
words?

Yes Yes No

Inputs DFM DFM Feature co-occurence
matrix

Outputs Topics Categorization Word vectors

Estimating Word
Embeddings

Design Choices in Word Embeddings
1. Data

High-quality embeddings require a large amount of training data

Usually trained on large external corpora (i.e. wikipedia; news articles; web pages)

Embeddings will reflect the language used in the training documents

2. Context Window Size

If meaning is defined by a word’s context, we need to define context

Usually implemented as a symmetric window of some length around each word

The size of the window dictates the kind of information the embedding will capture

3. Dimension of the Embedding

The embedding for each word will typically be between 50 and 500 elements long

The embedding encodes information about the contexts a word appears in, so in
theory larger embeddings are able to encode more information

In practice, medium-dimensional embeddings (100-300) work very well

Co-occurence Vectors
One simple “embedding” is produced by counting the occurrences of any term within a
fixed window of any other term and store these in a feature-cooccurence matrix:

debates_fcm <- 1
 debates_corpus %>%2
 tokens() %>%3
 tokens_tolower() %>%4
 fcm(context = "window",5
 window = 3,6
 tri = FALSE)7

8
save(debates_fcm, file = "../data/debates_fcm.Rdata")9

10
debates_fcm11

Feature co-occurrence matrix of: 327,761 by 327,761 features.
 features
features before the house proceeds to choice of a speaker ,
 before 948 119351 17939 89 28688 213 21405 18847 277 47978
 the 119351 3792520 580515 4167 3629935 13840 6681402 628635 18558 3962528
 house 17939 580515 2006 112 150334 176 211732 33340 1401 124961
 proceeds 89 4167 112 6 817 1 2572 197 0 870
 to 28688 3629935 150334 817 1053898 7231 736710 957469 5363 1291597
 choice 213 13840 176 1 7231 298 9407 10100 31 8430
 of 21405 6681402 211732 2572 736710 9407 755200 1244591 2787 1491028
 a 18847 628635 33340 197 957469 10100 1244591 161468 2751 985450
 speaker 277 18558 1401 0 5363 31 2787 2751 412 83721
 , 47978 3962528 124961 870 1291597 8430 1491028 985450 83721 1766522
[reached max_feat ... 327,751 more features, reached max_nfeat ... 327,751 more features]

Co-occurence Vectors
Given this representation, we can calculate the cosine similarity between the word vectors
of target words to find the closest other words in the embedding space:

library(quanteda.textstats)1
2

word_similarities <- textstat_simil(debates_fcm,3
 debates_fcm[which(featnames(debates_fcm) %in% c("election", "health", "banking")),],4
 method = "cosine",5
 margin = "documents")6

7
8

sort(word_similarities[,1], decreasing = TRUE)[1:10]9

 election elections referendum general electoral elected manifesto party vote labour
 1.0000000 0.2697683 0.2190709 0.2078489 0.1907036 0.1864098 0.1858062 0.1847441 0.1841158 0.1833788

sort(word_similarities[,2], decreasing = TRUE)[1:10]1

 health mental nhs care service services social healthcare education medical
 1.0000000 0.3688996 0.2943339 0.2893435 0.2541648 0.2453370 0.2348707 0.2285000 0.2264886 0.2239171

sort(word_similarities[,3], decreasing = TRUE)[1:10]1

 banking banks lending financial bank institutions corporate consumer
regulatory markets
 1.0000000 0.2769608 0.2318190 0.2301063 0.2215138 0.2132605 0.2086125 0.2057390
0.2057376 0.2046487

Co-occurence Vectors
Co-occurence vectors clearly capture something about the meaning of words

However, these vectors increase in the size of the vocabulary of the corpus

The vectors above each have length 327761

One consequence is that they tend to be very sparse (most words fail to occur with most
other words)

E.g. the sparsity of the example above is 99.9%

In most applications, sparse vectors like these tend to perform less well than dense
vectors

Similarity; classification; unsupervised learning, etc

We would therefore prefer a low-dimensional representation that didn’t suffer from
these sparsity issues

Word-2-Vec Overview
Word2Vec is a set of related methods for learning dense word
vectors.

(Mikolov et al, 2013)

One version of Word2Vec – skip-gram with negative sampling – follows this basic process:

1. Start with a very large corpus of text (i.e. all of Wikipedia)

2. Represent each word in the vocabulary as a vector, µj

Initialise each vector with random numbers

3. Go through each position, , in the text, where each position hast

A center word, (“target” words)t

Context words, (“outside” words)o

4. Calculate the probability of observing given (or vice versa), using the similarity of the
word vectors for and

o t
o t

5. Adjust the values of the word vectors, , to …µj

…maximize the probability of observing true context words

…minimize the probability of observing other words from the corpus

https://arxiv.org/abs/1301.3781

Word-2-Vec Intuition
What is the probability of observing the context words given the center word, ‘hope’?

important to get UN agreement as the last hope of demonstrating int
Context words

window of size 2


Center word at

position t


Context words

window of size 2

p(wo = the|wt = hope)
p(wo = last|wt = hope)
p(wo = of|wt = hope)

p(wo = demonstrating|wt = hope)

Word2Vec Objective Function
The objective of the Word2Vec model is to maximise the average log probability:

where probability, , is defined as:

1
T

T

∑
t=1

∑
−c≤j≤c,j≠0

logp(wt+j|wt)

p(wt+j|wt)

p(wt+j|wt) =
exp(vT

o ⋅ vt)

∑W
w=1 exp(vT

o ⋅ vt)

This is an example of the so!max function, which maps arbitrary values to a probability
distribution.

 is the dot product between word and word – measures the similarity
between the two vectors

 – normalization factor to make things add up to 1

vT
o ⋅ vt o t

∑W
w=1 exp(vT

o ⋅ vt)

Learning Skip-Gram Embeddings
(Negative Sampling)
The denominator of the so#max function defined above is very computationally
expensive to evaluate repeatedly and so Word2Vec recasts the problem as supervised
learning problem.

1. Select word from position and select
the “positive” words () that fall in
its context (i.e. words)

t
Y = 1

±2

2. For each true context word, select
“negative” context words () at
random from the entire corpus

K
Y = 0

3. Run a logistic regression, with the
positive/negative variable as outcome,
and the dot product between the words’
embeddings as predictor ()vT

o ⋅ vt

UN to 1 0.279

UN get 1 0.465

UN agreement 1 0.36

UN as 1 0.164

UN castle 0 -0.174

UN when 0 -0.23

UN chair 0 0.043

UN yoyo 0 -0.19

UN pancake 0 -0.049

t o Y vT
o ⋅ vt

Word2Vec Intuition
Question: Why do the estimated word-embeddings encode information about word
similarity?

The predicted probability of a context word is high when the dot product between the
context word’s embedding and the target word’s embedding is high

p(wt+j|wt) = exp(vT
o ⋅vt)

∑W
w=1 exp(vT

o ⋅vt)

vT
o ⋅ vt = ∑n

i=1 vo,ivt,i

This encourages the model to find embedding vectors that are similar to one another
for words that occur together frequently in the corpus

It also encourages the model to find embedding vectors that are similar to one another
for words that appear in similar contexts in the corpus, even if they rarely appear
together. E.g.

“worldcom” and “scandal” appear frequently together

“enron” and “scandal” appear frequently together

But “worldcom” and “enron” appear infrequently together

GloVe: Global Vectors for Word
Representation

The Glove algorithm builds directly on the idea of the co-occurence vectors that we
discussed previously

Weighted least squares model that learns dense vectors from the word-word co-
occurence counts

GloVe models the log of the number of times that each word appears in the context of
each other word:

min
θ

J(θ) where J(θ) =
V

∑
i=1

V

∑
i,j=1

f(Xi,j)(vT
i ⋅ vj − log(Xi,j))2

Where

 is a word-word co-occurence matrix

 is the number of times word appears in the context of word

X

GloVe vs Word2Vec
The core difference between the two models is that GloVe is a model for the global co-
occurence counts, while Word2Vec is an “online” model which trains progressively on a
moving window

The GloVe model has some advantages over Word2Vec

Very fast

Easily scales to very large corpora

Good performance on small corpora

However, across many practical applications, there is no clear evidence that one model
outperforms the other (Rodriguez and Spirling, 2020)

In both models, the researcher has to make several decisions that can be consequential
to the estimated word vectors

Context-window size

Embedding dimensionality

Pre-trained versus local fit

https://www.journals.uchicago.edu/doi/abs/10.1086/715162?journalCode=jop

Glove Embeddings
glove <- readRDS("../data/glove.rds")1

str(glove)1

 num [1:400000, 1:300] 0.0466 -0.2554 -0.1256 -0.0769 -0.2576 ...
 - attr(*, "dimnames")=List of 2
 ..$: chr [1:400000] "the" "," "." "of" ...
 ..$: NULL

glove[1,]1

 [1] 0.0465600 0.2131800 -0.0074364 -0.4585400 -0.0356390 0.2364300 -0.2883600 0.2152100 -0.1348600
-1.6413000 -0.2609100 0.0324340 0.0566210 -0.0432960 -0.0216720 0.2247600 -0.0751290 -0.0670180 -0.1424700
0.0388250 -0.1895100 0.2997700 0.3930500 0.1788700 -0.1734300 -0.2117800
 [27] 0.2361700 -0.0636810 -0.4231800 -0.1166100 0.0937540 0.1729600 -0.3307300 0.4911200 -0.6899500
-0.0924620 0.2474200 -0.1799100 0.0979080 0.0831180 0.1529900 -0.2727600 -0.0389340 0.5445300 0.5373700
0.2910500 -0.0073514 0.0478800 -0.4076000 -0.0267590 0.1791900 0.0109770
 [53] -0.1096300 -0.2639500 0.0739900 0.2623600 -0.1508000 0.3462300 0.2575800 0.1197100 -0.0371350
-0.0715930 0.4389800 -0.0407640 0.0164250 -0.4464000 0.1719700 0.0462460 0.0586390 0.0414990 0.5394800
0.5249500 0.1136100 -0.0483150 -0.3638500 0.1870400 0.0927610 -0.1112900
 [79] -0.4208500 0.1399200 -0.3933800 -0.0679450 0.1218800 0.1670700 0.0751690 -0.0155290 -0.1949900
0.1963800 0.0531940 0.2517000 -0.3484500 -0.1063800 -0.3469200 -0.1902400 -0.2004000 0.1215400 -0.2920800
0.0233530 -0.1161800 -0.3576800 0.0623040 0.3588400 0.0290600 0.0073005
[105] 0.0049482 -0.1504800 -0.1231300 0.1933700 0.1217300 0.4450300 0.2514700 0.1078100 -0.1771600
0.0386910 0.0815300 0.1466700 0.0636660 0.0613320 -0.0755690 -0.3772400 0.0158500 -0.3034200 0.2837400
-0.0420130 -0.0407150 -0.1526900 0.0749800 0.1557700 0.1043300 0.3139300
[131] 0.1930900 0.1942900 0.1518500 -0.1019200 -0.0187850 0.2079100 0.1336600 0.1903800 -0.2555800
0.3040000 -0.0189600 0.2014700 -0.4211000 -0.0075156 -0.2797700 -0.1931400 0.0462040 0.1997100 -0.3020700
0.2573500 0.6810700 -0.1940900 0.2398400 0.2249300 0.6522400 -0.1356100
[157] -0.1738300 -0.0482090 -0.1186000 0.0021588 -0.0195250 0.1194800 0.1934600 -0.4082000 -0.0829660
0.1662600 -0.1060100 0.3586100 0.1692200 0.0725900 -0.2480300 -0.1002400 -0.5249100 -0.1774500 -0.3664700
0.2618000 -0.0120770 0.0831900 -0.2152800 0.4104500 0.2913600 0.3086900
[183] 0.0788640 0.3220700 -0.0410230 -0.1097000 -0.0920410 -0.1233900 -0.1641600 0.3538200 -0.0827740
0.3317100 -0.2473800 -0.0489280 0.1574600 0.1898800 -0.0266420 0.0633150 -0.0106730 0.3408900 1.4106000
0.1341700 0.2819100 -0.2594000 0.0552670 -0.0524250 -0.2578900 0.0191270
[209] -0.0220840 0.3211300 0.0688180 0.5120700 0.1647800 -0.2019400 0.2923200 0.0985750 0.0131450
-0.1065200 0.1351000 -0.0453320 0.2069700 -0.4842500 -0.4470600 0.0033305 0.0029264 -0.1097500 -0.2332500

Context-window Size
The size of the context window determines which type of word meaning is represented in
the embedding space

Small context windows (1-3 words) syntactic meaning± →
E.g. putting, bringing, taking, giving, providing, etc

Medium context windows (5-10 words) semantic meaning± →
E.g. crimes, crime, offences, offence, prosecutions, murder, etc

Large context windows (10+ words) topical meaning± →
E.g. tourism, visitors, museum, holiday, cafe, etc

 the size of the window will depend on the research question.⇒

Embedding Dimensions
The size of the embedding vectors determines how complex the model is that we wish to
fit

We have an embedding for each word, so increasing the embedding dimension by 1
multiplies the number of parameters to estimate by (the total number of words in the
vocabulary)

V

Too many dimensions: higher chance of modelling noise

Too few dimensions: higher chance of missing important subtleties in meaning

General guidance: about 150-300 is fine (though this is not a very satisfying answer)

What do word-embedding dimensions
“mean”?

We can now generate multidimensional vectors for each of our words which, we will see
shortly, are very successful in capturing semantic relations among words

This implies that a meaningful semantic structure must be present in the respective
vector spaces

However, it is very difficult to answer questions such as “what do high and low values of
the th embedding dimension mean?”i

Example:

rownames(glove)[order(glove[,1], decreasing = F)][1:6]1

[1] "samiul" "stuffit" "guangwei" "decompress" "resend" "sife"

rownames(glove)[order(glove[,22], decreasing = F)][1:6]1

[1] "cheesecloth" "globe.com" "zubaie" "metrohealth" "25-march" "30-aug"

rownames(glove)[order(glove[,300], decreasing = F)][1:6]1

[1] "republish" "12,000-page" "transmittable" "affray" "6-pica" "spongiform"

Generating “interpretable” word embeddings is the subject of ongoing work

Local Versus Pre-Trained
Either the Word2Vec or Glove methods can be applied to any large corpus of data. For
applied research, there are typically two choices:

Locally-trained embeddings

Collect a large corpus

Estimate a word-embedding model

Use the word-embeddings

Advantages: Can capture “local” meanings of words which may differ from more
general use

Distadvantages: More computationally expensive and requires more coding
decisions/effort

Pre-trained embeddings

Download a pre-trained set of word-embeddings

Use the word-embeddings

Advantages: Usually high-quality embeddings trained on billions of texts

Visualisation
It is common to see visualisations of word embeddings in lower dimensions

There are many approaches to dimensionality reduction

Principal Component Analysis (PCA)

t-distributed stochastic neighbour embeddings (t-SNE)

These visualisations o#en give helpful insights into the ways that language is used in
the data that was used to train the models

Using Word-
Embeddings

Similarity
A key advantage of word embeddings: we can compute the similarity between words
(or collections of words)

The similarity between two words can be calculated as the cosine of the angle between
the embedding vectors:

We can then sort the words in order of their similarity with the target word and report
the “nearest neighbours”

cos(θ) =
wi ⋅ wj

||wi|| ||wj||

Similarity Demonstration
library(text2vec)1

2
Extract target embedding3
target <- glove[which(rownames(glove) %in% c("taxes", "quantitative", "enron")),]4

5
Calculate cosine similarity6
target_sim <- sim2(glove,7
 target)8

9
Report nearest neighbours10
sort(target_sim[,1], decreasing = T)[1:10]11

 taxes tax income paying taxation pay revenues fees excise costs
1.0000000 0.8410683 0.6800698 0.6292870 0.6281890 0.6165617 0.5964931 0.5957133 0.5911929 0.5867159

Report nearest neighbours1
sort(target_sim[,3], decreasing = T)[1:10]2

 quantitative qualitative empirical measurement analysis methodology analytical analyses
methodologies numerical
 1.0000000 0.6452297 0.5144293 0.4902190 0.4807779 0.4792444 0.4602726 0.4536292
0.4420934 0.4269905

Report nearest neighbours1
sort(target_sim[,2], decreasing = T)[1:10]2

 enron worldcom skilling fastow dynegy andersen executives accounting aig auditors
 1.0000000 0.6551277 0.6350623 0.5476151 0.5255642 0.5219762 0.5188566 0.5134948 0.4963848 0.4742722

Analogies
One surprising feature of word-
embeddings is that they can capture
more nuanced features of language than
simple similarity

Among the most widely discussed
features of word embeddings is their
ability to capture analogies via their
geometry

Analogies are linguistic expressions
which describe processes of transfering
information from one subject (the
analogue) to another (the target)

Example:

Apple is to tree as grape is to ____

King is to man as _____ is to woman

Word embeddings have some ability to

vector(king) − vector(man) + vector(wo

Example process:

1. Compute vector

2. Calculate cosine similarity between new vector and
all word vectors

3. Report most similar vectors (normally excluding
those for king, man and woman)

vector(king) − vector(man) + vector(

Analogies Demonstration
Extract vectors1
taller <- glove[which(rownames(glove) == "taller"),]2
tall <- glove[which(rownames(glove) == "tall"),]3
thin <- glove[which(rownames(glove) == "thin"),]4

5
Generate analogy vector6
target <- taller - tall + thin7

8
Calculate cosine similarity with all other vectors9
target_sim <- sim2(glove,10
 matrix(target, nrow = 1))11

12
Print output13
sort(target_sim[,1], decreasing = T)[1:10]14

 thinner thin thicker taller slimmer narrower noticeably softer slightly weaker
 0.6823011 0.6795648 0.6409053 0.4766686 0.4659788 0.4645112 0.4491847 0.4438605 0.4299319 0.4269721

Implication: Word-embedding vectors encode certain linguistic regularities that relate to
the relation between different words.

Caveats:

1. Only works with reasonably common words

2. Only works for certain relations, but not others

3. Understanding analogy is an open area for research

Dictionary Expansion
One helpful application of the word-similarity properties we have just discussed is that
we can use them to automatically build more complete dictionaries

Process

1. Start with a small “seed” dictionary

2. Calculate the average embedding of the words in the dictionary

3. Calculate the cosine similarity between the dictionary embedding and all other
words

4. Report the most similar words and use them to extend the original dictionary

This approach can enable us to find words associated with our concept of interest but
which may not occur to the research a priori

Dictionary Expansion Application
Define seed dictionary1
seed_dictionary <- c("hate", "dislike", "despise")2

3
Extract seed words 4
hate_words <- glove[which(rownames(glove) %in% seed_dictionary),]5

6
Calculate mean embedding7
hate_words_vec <- colMeans(hate_words)8

9
Calculate cosine similarity with all other vectors10
target_sim <- sim2(glove,11
 matrix(hate_words_vec, nrow = 1))12

13
Print output14
names(sort(target_sim[,1], decreasing = T))[1:40]15

 [1] "despise" "dislike" "hate"
"loathe" "hatred" "hated" "detest"
"hates" "disdain" "distrust" "adore"
"resent" "disliked" "distaste" "hating"
"dislikes" "admire" "loathing" "feelings"
"bigotry" "antipathy"
[22] "affection" "envy" "animosity"
"intolerance" "equate" "abhor" "despises"
"hostility" "despised" "profess" "admiration"
"criticize" "liking" "fear" "perceive"
"disrespect" "mistrust" "disliking" "hateful"

Applications

Application 1

In lecture 2 we investigated the claim that male and female politicians have distinct styles. Previously, we applied an existing
sentiment dictionary to a corpus of parliamentary texts. Today, we will supplement this approach by using word-embeddings
to automatically expand the set of words we use to score speeches.

Are female politicians less aggressive than male politicians? (Hargrave and Blumenau, 2022)

Aggressive Word Dictionary

Although this is a reasonable-looking list of aggressive words, are there other words that
MPs might use to criticise each other in parliamentary debate?

library(quanteda)1
aggression_words <- read.csv("aggression_words.csv")[,1]2

print(aggression_words)1

 [1] "irritated" "stupid" "stubborn" "accusation" "acuse"
"accusations" "accusing" "anger" "angered" "annoyance" "annoyed"
"attack" "insult" "insulting"
 [15] "insulted" "betray" "betrayed" "blame" "blamed"
"blaming" "bitter" "bitterly" "bitterness" "complain"
"complaining" "confront" "confrontation" "fibber"
 [29] "fabricator" "phony" "fibber" "sham" "deceived"
"deceive" "disgrace" "villain" "good-for-nothing" "hypocrite" "deception"
"steal" "needlessly" "needless"
 [43] "criticise" "criticised" "criticising" "blackened" "fiddled"
"fiddle" "problematic" "lawbreakers" "offenders" "offend"
"unacceptbale" "leech" "phoney" "appalling"
 [57] "incapable" "farcical" "absurd" "ludicrous" "nonsense"
"laughable" "nonsensical" "ridiculous" "outraged" "hysterial"
"adversarial" "aggressive" "shady" "stereotyping"
 [71] "unhelpful" "unnatural" "assaulted" "assault" "assaulting" "half-
truths" "petty" "humiliate" "humiliating" "confrontational" "hate"
"hatred" "furious" "hostile"
 [85] "hostility" "nasty" "obnoxious" "sleeze" "sleezy"
"inadequacy" "faithless" "neglectful" "neglect" "neglected" "wrong"
"failure" "failures" "failed"
 [99] "fail" "scapegoat" "cruel" "cruelty" "demonise"
"demonised" "tactic" "trick" "trickery" "deceit" "dishonest"
"deception" "devious" "deviouness"
[113] "shenanigans" "fraudulence" "fraudulent" "fraud" "swindling"
"archaic" "sly" "slyness" "silly" "silliness" "scandal"
"scandalous" "slander" "slanderous"
[127] "libellous" "disreputable" "dishonourable" "shameful" "atrocious"
"gimmick" "immoral" "ridicule" "antagonistic" "antagonise" "ill-
mannered" "spiteful" "spite" "vindictive"
[141] "prejudice" "prejudices" "disregard" "arrogant" "arrogance"

Estimating Word Embeddings
In this instance, we will use the Glove model to estimate a local set of word-embeddings

The hope is that this will allow us to pick up on the ways in which aggressive words are
used in the specific context of parliamentary debate

library(text2vec)1
2

Load data3
4

load("debates_fcm.Rdata")5
6

Fit GLOVE model7
8

glove = GlobalVectors$new(rank = 150, x_max = 2500L)9
debate_main = glove$fit_transform(debates_fcm, n_iter = 500, convergence_tol = 0.005, n_threads = 3, learning_rate = 0.14)10

11
Extract word embeddings12
debate_context = glove$components13
 14
word_vectors = debate_main + t(debate_context)15

16
save(word_vectors, file = "word_vectors_150.Rdata")17

str(word_vectors)1

 num [1:14683, 1:150] 0.0983 0.1094 0.2122 0.1579 0.1368 ...
 - attr(*, "dimnames")=List of 2
 ..$: chr [1:14683] "house" "proceeds" "choice" "speaker" ...
 ..$: NULL

Incorporating Word Embeddings
With our word-embeddings in hand, we can then use them to create a dictionary
embedding by averaging over the embeddings for each word:

Extract word embeddings of words in dictionary1
target_words <- word_vectors[aggression_words,] 2

3
Calculate mean embedding for this dictionary4
target_vector <- colMeans(target_words)5

6
Distance between each word in the vocabulary and the mean embedding7
cos_sim <- sim2(word_vectors, 8
 matrix(target_vector, nrow = 1)) 9

10
Store results11
word_scores <- data.frame(score = cos_sim[,1], 12
 in_original_dictionary = dimnames(cos_sim)[[1]]%in%aggression_words)13

Incorporating Word Embeddings
word_scores <- word_scores[order(word_scores$score, decreasing = T),]1
head(word_scores, 30)2

 score in_original_dictionary
disgraceful 0.6828765 TRUE
shameful 0.6611104 TRUE
outrageous 0.6553395 TRUE
scaremongering 0.6348777 TRUE
utterly 0.6147277 FALSE
cynical 0.6142637 FALSE
frankly 0.6091110 FALSE
scandalous 0.6077674 TRUE
dishonest 0.6039909 TRUE
embarrassing 0.5921001 FALSE
absurd 0.5897929 TRUE
ridiculous 0.5887514 TRUE
ludicrous 0.5873914 TRUE
deplorable 0.5846311 TRUE
incompetence 0.5773249 FALSE
misguided 0.5683095 FALSE
irresponsible 0.5675159 FALSE
pathetic 0.5667197 FALSE
appalling 0.5536031 TRUE
dreadful 0.5514060 FALSE
nonsense 0.5435853 TRUE
bizarre 0.5403646 FALSE
complacency 0.5319133 FALSE
ashamed 0.5275484 TRUE
illogical 0.5250856 FALSE
arrogant 0.5205944 TRUE
incompetent 0.5176657 FALSE
shocking 0.5158744 FALSE
accusation 0.5158350 TRUE
arrogance 0.5152852 TRUE

Scoring Speeches
In addition to using this approach to finding words we might have missed, we now have
scores associated with each word that indicate the relevance of the word to the concept
of interest

We can use these word-weights to score individual speeches

- is the similarity score for each word embedding and the dictionary embedding

 is the tf-idf count of the word in the speech

 therefore represents the fraction of words in sentence that are relevant to the
concept contained in the seed dictionary

Scorei =
∑W

w SimwNw,i

∑W
w Nw,i

Simw

Nw,i

Scorei i

Key advantage: speech scores reflect the ways that aggressive words are used in the
context of parliamentary debate

Comparison with Traditional
Dictionaries

Bias in Word-
Embeddings

Bias in Word-Embeddings
An important substantive finding about word-embedding methods is that they can
learn human biases in the semantic relationsips they encode into the vector space

This occurs because they are trained on human-generated data: if biased relations
between words occur frequently in natural language texts, the word-embeddings learn
those biases

“There is nothing about doing data analysis that is neutral. What and how data is
collected, how the data is cleaned and stored, what models are constructed, and
what questions are asked – all of this is political.” Danah Boyd, NYU

Another important theme of current work is in “de-biasing” word-embedding methods

Bias in Word-Embeddings, Example
Extract vectors1
doctor <- glove[which(rownames(glove) == "doctor"),]2
father <- glove[which(rownames(glove) == "father"),]3
mother <- glove[which(rownames(glove) == "mother"),]4

5
Generate analogy vector6
target <- (doctor - father) + mother7

8
Calculate cosine similarity with all other vectors9
target_sim <- sim2(glove,10
 matrix(target, nrow = 1))11

12
Print output13
sort(target_sim[,1], decreasing = T)[1:10]14

 doctor nurse doctors woman patient mother physician pregnant hospital medical
0.8397708 0.6648028 0.6255664 0.5923487 0.5839312 0.5719679 0.5527085 0.5417390 0.5404372 0.5336439

Racial Bias in Word-Embeddings (Garg
et al., 2018, PNAS)

https://www.pnas.org/doi/epdf/10.1073/pnas.1720347115

Break

Large Language Models

Dependencies in Language
In this course we have largely focused on bag-of-words models

Tend to be a good choice for a wide range of datasets and tasks in text analysis in
the social sciences

Dictionaries; topic models; Naive Bayes; etc

Bag-of-word classifiers based on term frequencies can achieve good performance

Yet, when the interdependent nature of words becomes important, more advanced
models can become helpful that capture the dependencies in language

Language modelling
We have seen several examples of language models, which we have taken to be
probabilistic descriptions of word counts in documents

Naive Bayes: a distribution over words for each category

Topic models: a distribution over words for each topic; a distribution over topics for
each document

In all instances, we have considered bag-of-words models – models that do not take
word order or dependency into account

More advanced language models provide probabilistic descriptions for word sequences

For instance, given a sequence of words, a language model might try to predict the
word that comes next

Language Models
Language modelling: the task of teaching an algorithm to predict/generate what comes
next

the students opened their minds (?)

More formally: given a sequence of words , compute the probability
distribution of the next word :

where can be any word in the vocabulary .

x1, x2, . . . , xt

xt+1

P (xt+1|xt, . . . , x1)

xt+1 V

Language Modelling Applications
Language models should be very familiar to you!

Why Should Social Scientists Care
About Language Models?

Language modelling has become a benchmark test that helps us measure our progress
on predicting language use

More relevantly to social scientists, language modelling is now a subcomponent of
many NLP tasks, including those we have studied on this course

Topic modelling

Document classification

Sentiment analysis

etc

Virtually all state-of-the-art natural language processing tools are based on language
models of different types

Social scientists are beginning to adopt these methods!

n-gram Language Models
Question: How might we learn a language model?

Old Answer: Use n-grams!

Idea: Collect statistics about how frequent different n-grams are…

a. the students opened their books

b. the students opened their laptops

c. the students opened their exams

d. the students opened their minds

…and use these to predict the next word when we see the phrase “the students opened
their…”.

P(w|students opened their) =
count(students opened their w)
count(students opened their)

Note: n-gram models require the Markov assumption: the word at depends only on
the preceding words!

xt+1

n − 1

n-gram Language Models
Suppose we are learning a 4-gram language model.

as the proctor started the clock, the students opened their ____

P(w|students opened their) =
count(students opened their w)
count(students opened their)

Example:

Suppose we have a large corpus of text

“students opened their” occurred 1000 times

“students opened their books” occurred 400 times

→ P(books|students opened their) = 0.4
“students opened their exams” occurred 100 times

→ P(books|students opened their) = 0.1

In this example, discarding the word “proctor” results in the wrong prediction!

n-gram Language Models
The core problem with n-gram language models is sparsity.

What if “students opened their ” doesn’t occur in the data?w

count(students opened their w) = 0

P(w|students opened their) = count(students opened their w)
count(students opened their) = 0

The probability of word is zero!w

What if “students opened their” doesn’t occur in the data?

Then we can’t calculate the probability for any word!

Increasing the size of the n-gram makes these sparsity problems worse

if “students opened their” only occurs 1000 times, “as the proctor started the clock,
the students opened their” will occur many fewer times!

Trade-off between model accuracy and sparsity

Increasing the size of the corpus helps with this problem a bit, but not much

 n-gram models are good for clarifying the intuition behind a language model but are
not very useful in practice
→

Neural Language Models
These are models that can capture dependencies between words without running into
the sparsity problems that affect n-gram models

These models process sequences of inputs and predict sequences of outputs

Input: Each context word is associated with an embedding vector. The input vector
is a concatenation of those vectors.

Output: probability distribution over the next word

The key innovation is that they are based on dense representations of words
(embeddings), rather than sparse representations

Removes the sparsity problem!

Better treatment of out-of vocabulary words

Each word in a sequence updates a set of parameters which are then used to predict the
final word in the sequence

Model architecture is o#en an RNN (recurrent neural network), that allows for longer
sequences and for words further away from the target word to have predictive
power

Neural Language Models
Advantages

1. Can process inputs of any length (not limited to 3 or 4 n-grams)

2. The prediction for can use information from many steps back (at least in theory)

3. The model size does not increase for longer input sequences

Disadvantages

1. Computation is very slow

2. In practice, it tends to be that predictions are dominated by words close to the target
word in the sequence (i.e. we still lack a way of seeing the importance of “proctor”)

xt+1

Attention
Consider these two sentences:

A human finds it easy to predict the missing words on the basis of the difference
between “so#ware” and “petroleum”.

Word-embedding methods like Word2Vec, which also tried to predict words from their
context, struggle because they weight all words in the context window equally when
constructing embeddings

Major breakthrough in modern NLP: train algorithms to also “pay attention” to the
relevant features for prediction problems

As a leading firm in the ___ sector, we hire highly skilled so#ware engineers.

As a leading firm in the ___ sector, we hire highly skilled petroleum engineers.

(Vaswani et al. 2023)

https://arxiv.org/abs/1706.03762

Attention

Words have a darker shading when they are given more weight in the prediction problem.

Attention

Transformers
Start with a Sequence of Words: x1, x2, … , xn

Transform Words into Embedding Vectors: We transform these words into embedding
vectors, , which are numerical representations capturing the meaning of
each word.

z1, z2, … , zn

Add Positional Encoding: We add positional encodings to the embedding vectors to
provide the model with information about the position of each word in the sequence.

Iteratively Adapt Embedding Vectors: We iteratively adapt these embedding vectors
through multiple layers by combining:

Information from the Embedding of Word : The current embedding vector of word
.

Contextual Information via Self-Attention: The embeddings of all other words in
the sequence, using the attention mechanism to weigh their importance and
relevance.

Multiple Perspectives via Multi-Head Attention: Different attention heads capture
various aspects of the relationships between words.

i
i

Why Does Attention Help?
The key innovation of transformer models consists of introducing the concept of attention
into a neural-network architecture.

Focus on Relevant Information:

Attention allows the model to focus on the most relevant parts of the input
sequence when making predictions. It enables the model to weigh the importance
of each word relative to others in the sequence.

Contextual Understanding:

By looking at different parts of the input simultaneously, the attention mechanism
helps the model understand the context and relationships between words, even if
they are far apart in the sequence.

E.g. The embedding vectors are updated such that instances of the same word that
appear in different contexts will have different embeddings

Parallel Processing:

Unlike traditional models that process text sequentially, attention mechanisms can
process all words in the sequence simultaneously, dramatically improving

Transformer-based Language Models
Autoregressive Models (e.g., GPT):

Pretraining Task:

Predict the next token in a sequence, having seen all the previous ones.

Attention Mechanism:

During training, attention heads only attend to previous tokens, not subsequent
ones.

Ideal Use Case:

Best suited for text generation tasks where the model generates text one token at a
time, predicting the next token based on the preceding context.

Autoencoding Models (e.g., BERT):

Pretraining Task:

Mask some input tokens and train the model to reconstruct the original sequence.

Attention Mechanism:

Utilize bidirectional representations, attending to both previous and subsequent

R packages
You need a python installation, and to call python code from R. Here some initial steps:

For importing python code1
library(reticulate)2

3
Specify the path to your Python installation4
use_python("/usr/bin/python3") 5

6
reticulate::py_install('transformers', pip = TRUE)7

8
transformer = reticulate::import('transformers')9
tf = reticulate::import('tensorflow')10
builtins <- import_builtins() #built in python methods11

12
tokenizer <- transformer$AutoTokenizer$from_pretrained('bert-base-uncased')13
bert.model <- transformer$TFBertModel$from_pretrained("bert-base-uncased")14

Social Science
Applications

A Model To Rule Them All?
One of the major strengths of LLMs is that they can perform a wide variety of tasks using
the same modelling infrastructure

Transformer infrastructure can be used for classical NLP tasks:

Classify topics (e.g.)

Detect sentiment (e.g)

Measure Ideology (e.g.)

Transformer models give us an ability to generate text, not just measure latent concepts

Generative AI can be used for new applications, such as

Complementing human labels (e.g.)

Simulating human samples (e.g.)

Schöll, Gallego, Le Mens

Simmons, Shaffer

Baly et al

Wang et al

Argyle et al

https://onlinelibrary.wiley.com/doi/full/10.1111/ajps.12772
https://onlinelibrary.wiley.com/doi/full/10.1111/ajps.12791?casa_token=OL77LH9S1h0AAAAA%3Ag3fY_lyM2fjAzuEZWcaCsHckDJ8QEqHpZRB1U94qPbXrR4xzy9PyJNcctwEytzNMUWyIlifBRz4Eh60
https://aclanthology.org/2020.emnlp-main.404/
https://arxiv.org/abs/2108.13487
https://www.cambridge.org/core/journals/political-analysis/article/out-of-one-many-using-language-models-to-simulate-human-samples/035D7C8A55B237942FB6DBAD7CAA4E49

Conclusion

Summing Up
Word embedding methods provide a representation of word “meaning” by encoding
information about the contexts in which words occur

These vector result in a rich representation that allow us to measure the similarity
between different words

There are several modelling decisions to make when estimating word embeddings,
including modelling approach, context-window size, and embedding length

Language models describe a story about how texts are generated, using probabilities

Modern large language models are built on a transformer infrastructure which make
use of dense language representations

You can use them to solve many classic NLP tasks

THANK YOU!

