Day 11 Outline

Topic Models

Latent Dirichlet Allocation (LDA)

Beyond Latent Dirichlet Allocation

Correlated and Dynamic Topic Models

Structural Topic Model

Summary
Quantitative text analysis always requires:

1. Construction of a quantitative matrix from textual features
2. A quantitative or statistical procedure applied to that matrix
3. Summary or interpretation of the results of that procedure
Where are we?

Acquire Documents → Preprocess → Research Objective

- Existing Corpora
- Undigitized electronic text

Classification

Known Categories
- Dictionary Methods
- Supervised Methods
- Individual Classification
- Measuring Proportions (ReadMe)
- Individual Methods
- Ensembles

Unknown Categories
- Fully Automated Clustering
- Single Membership Models
- Mixed Membership Models
- Document Level (LDA)
- Date Level (Dynamic Multitopic Model)
- Author Level (Expressed Agenda Model)

Ideological Scaling
- Supervised (wordscores)
- Unsupervised (wordfish)

Computer Assisted Clustering
Where are we?

For the past two days:

1. Dictionary approaches
2. Supervised approaches
3. Scaling methods

Today we move on to unsupervised methods

Note that we will still need to make many of the same feature selection decisions as we did previously...
Topic Models
Introduction to topic models

Topic models allow us to cluster similar documents in a corpus together.

Wait. Don’t we already have tools for that? Yes! Dictionaries and supervised learning.

So what do topic models add?
What do topic models add?

<table>
<thead>
<tr>
<th>Do you know the categories in which you want to place documents?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you know the rule for placing documents in categories?</td>
<td>Yes</td>
<td>No</td>
</tr>
</tbody>
</table>
What do topic models add?

<table>
<thead>
<tr>
<th>Do you know the categories in which you want to place documents?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you know the rule for placing documents in categories?</td>
<td>Yes</td>
<td>Dictionary methods</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td></td>
</tr>
</tbody>
</table>
What do topic models add?

<table>
<thead>
<tr>
<th>Do you know the categories in which you want to place documents?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you know the rule for placing documents in categories?</td>
<td>Yes</td>
<td>Dictionary methods</td>
</tr>
<tr>
<td></td>
<td>No</td>
<td>Supervised learning</td>
</tr>
</tbody>
</table>
What do topic models add?

<table>
<thead>
<tr>
<th>Do you know the categories in which you want to place documents?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you know the rule for placing documents in categories?</td>
<td>Yes</td>
<td>No</td>
</tr>
<tr>
<td></td>
<td>Dictionary methods</td>
<td>Supervised learning, Topic Models</td>
</tr>
</tbody>
</table>
What do topic models add?

<table>
<thead>
<tr>
<th>Do you know the categories in which you want to place documents?</th>
<th>Yes</th>
<th>No</th>
</tr>
</thead>
<tbody>
<tr>
<td>Do you know the rule for placing documents in categories?</td>
<td>Yes</td>
<td>Dictionary methods</td>
</tr>
<tr>
<td>No</td>
<td>Supervised learning</td>
<td>Topic Models</td>
</tr>
</tbody>
</table>
Introduction to topic models

- Topic models are algorithms for discovering the main themes in an unstructured corpus.
- They require no prior information, training set, or labelling of texts before estimation.
- They allow us to automatically organise, understand, and summarise large archives of text data.
 1. Uncover hidden themes.
 2. Annotate the documents according to themes.
 3. Organise the collection using annotations.
What is a “topic”?

- **Google**: “a matter dealt with in a text or conversation; a subject.”
- **Topic models**: probability distribution over a fixed word vocabulary
- Consider a vocabulary: gene, dna, genetic, data, number, computer
- When speaking about **genetics**, you will:
 - frequently use the words “gene”, “dna” & “genetic”
 - infrequently use the words “data”, “number” & “computer”
- When speaking about **computation**, you will:
 - frequently use the words “data”, “number” & “computation”
 - infrequently use the words “gene”, “dna” & “genetic”

<table>
<thead>
<tr>
<th>Topic</th>
<th>gene</th>
<th>dna</th>
<th>genetic</th>
<th>data</th>
<th>number</th>
<th>computer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genetics</td>
<td>0.4</td>
<td>0.25</td>
<td>0.3</td>
<td>0.02</td>
<td>0.02</td>
<td>0.01</td>
</tr>
<tr>
<td>Computation</td>
<td>0.02</td>
<td>0.01</td>
<td>0.02</td>
<td>0.3</td>
<td>0.4</td>
<td>0.25</td>
</tr>
</tbody>
</table>

Note that no word has probability of exactly 0 under either topic.
A motivating example

- **Data:** UK House of Commons’ debates (PMQs)
 - ≈ 30000 parliamentary speeches from 1997 to 2015
 - ≈ 3000 unique words
 - ≈ 2m total words

- **Sample/feature selection decisions**
 - Sample selection: Only PMQs (≈ 3% of total speeches)
 - Feature selection: Removed frequently occurring & very rare words
 - Feature selection: All words have been “stemmed”

- **Results of a 30-topic model**
Latent Dirichlet Allocation (LDA)
Latent Dirichlet Allocation (LDA)

Latent Dirichlet Allocation

David M. Blei
Computer Science Division
University of California
Berkeley, CA 94720, USA
BLEI@CS.BERKELEY.EDU

Andrew Y. Ng
Computer Science Department
Stanford University
Stanford, CA 94305, USA
ANG@CS.STANFORD.EDU

Michael I. Jordan
Computer Science Division and Department of Statistics
University of California
Berkeley, CA 94720, USA
JORDAN@CS.BERKELEY.EDU

Editor: John Lafferty

Abstract
We describe latent Dirichlet allocation (LDA), a generative probabilistic model for collections of discrete data such as text corpora. LDA is a three-level hierarchical Bayesian model, in which each item of a collection is modeled as a finite mixture over an underlying set of topics. Each topic is, in turn, modeled as an infinite mixture over an underlying set of topic probabilities. In the context of text modeling, the topic probabilities provide an explicit representation of a document. We present efficient approximate inference techniques based on variational methods and an EM algorithm for empirical Bayes parameter estimation. We report results in document modeling, text classification, and collaborative filtering, comparing to a mixture of unigrams model and the probabilistic LSI model.
Latent Dirichlet Allocation (LDA)

Each topic is a distribution over words
Each document is a mixture of corpus-wide topics
Each word is drawn from one of those topics
Latent Dirichlet Allocation (LDA)
Latent Dirichlet Allocation (LDA)

- In reality, we only observe the documents
- The other structure are hidden variables
Latent Dirichlet Allocation (LDA)

- Our goal is to **infer** the hidden variables
- I.e., compute their distribution conditioned on the documents

\[
p(\text{topics}, \text{proportions}, \text{assignments}|\text{documents})
\]
Topic modelling allows us to extrapolate backwards from a collection of documents to infer the “topics” that could have generated them.
The LDA model is a Bayesian mixture model for discrete data where topics are assumed to be uncorrelated.

LDA provides a generative model that describes how the documents in a dataset were created.

Each of the K topics is a distribution over a fixed vocabulary.

Each document is a collection of words, generated according to a multinomial distribution, one for each of K topics.

Inference consists of estimating a posterior distribution over the parameters of the probability model from a combination of what is observed (words in documents) and what is hidden (topic and word parameters).
Latent Dirichlet Allocation: Details

- For each document, the LDA generative process is:
 1. randomly choose a distribution over topics (multinomial of length \(K \))
 2. for each word in the document
 2.1 Probabilistically draw one of the \(K \) topics from the distribution over topics obtained in step 1, say topic \(k \) (each document contains topics in different proportions)
 2.2 Probabilistically draw one of the \(V \) words from \(\beta_k \) (each individual word in the document is drawn from one of the \(K \) topics in proportion to the document’s distribution over topics as determined in previous step)

- The goal of inference in LDA is to discover the topics from the collection of documents, and to estimate the relationship of words to these, assuming this generative process
LDA generative model

1. Term distribution β for each topic is drawn:

$$\beta_k \sim \text{Dirichlet}(\eta)$$

→ probability that each word occurs in a given topic (k)

2. Proportions θ of the topic distribution for the document are drawn by

$$\theta_d \sim \text{Dirichlet}(\alpha)$$

→ probability that each topic occurs in a given document (d)

3. For each of the N words in each document

- choose a topic $z_i \sim \text{Multinomial}(\theta)$
- choose a word $w_i \sim \text{Multinomial}(p(w_i|z_i, \beta))$
LDA as a graphical model

- Encodes assumptions
- Connects to algorithms for computing with data
LDA as a graphical model

- Nodes are random variables; edges indicate dependence.
- Shaded nodes are observed; unshaded nodes are hidden.
- Plates indicate replicated variables.
LDA as a graphical model

- $W_{d,n}$ observed word (word level)
- $Z_{d,n}$ topic assignment (word level)
- θ_d topic proportions (document level)
- β_k probability distribution over words (topic level)
- α proportions parameter (corpus level)
- η topic parameter (corpus level)
LDA as a graphical model

- $\beta_k \sim \text{Dirichlet}(\eta)$
- $\theta_d \sim \text{Dirichlet}(\alpha)$
- $Z_{d,n} \sim \text{Multinomial}(\theta_d)$
- $W_{d,n} \sim \text{Multinomial}(p(w_i|z_i, \beta_k))$

Note: η and α govern the sparsity of the draws from the dirichlet. As they \to 0, the multinomials become more sparse.
This joint defines a posterior, \(p(\theta, z, \beta | w) \).

From a collection of documents, infer

- Per-word topic assignment \(z_{d,n} \)
- Per-document topic proportions \(\theta_d \)
- Per-corpus topic distributions \(\beta_k \)

Then use posterior distribution over these parameters to perform the task at hand \(\rightarrow \) information retrieval, document similarity, exploration, and others.
The Dirichlet distribution

- The Dirichlet distribution is an exponential family distribution over the simplex, i.e., positive vectors that sum to one.
- The parameter α controls the mean shape and sparsity of θ.
- The Dirichlet is used twice in LDA:
 - The topic proportions (θ) are a K dimensional Dirichlet.
 - The topics (β) are a V dimensional Dirichlet.
- Estimation is performed using collapsed Gibbs sampling and/or Variational Expectation-Maximization (VEM).
- Fortunately, for us these are easily implemented in R.
Latent Dirichlet allocation (LDA)

Imagine a corpus consisting of only three words

- The word simplex describes the possible probabilities of the multinominal distribution over these three words
Latent Dirichlet allocation (LDA)

- We can locate **topics** within the **word-simplex**
- Each topic represents a different distribution over words
- Smaller $\eta \rightarrow$ sparser topics \rightarrow topics will be closer to the word-simplex lines
Latent Dirichlet allocation (LDA)

- We can locate documents within the topic-simplex
- Each document is a mixture of topics
- Smaller $\alpha \rightarrow$ sparser documents \rightarrow documents will be closer to topic-simplex lines
Recall that $\theta_d \sim \text{Dirichlet}(\alpha)$: the topic proportions of each document are governed by a dirichlet distribution with parameter α.

When $\alpha = 10$
Dirichlet distribution

Recall that $\theta_d \sim \text{Dirichlet}(\alpha)$: the topic proportions of each document are governed by a dirichlet distribution with parameter α.

When $\alpha = 1$
Recall that $\theta_d \sim \text{Dirichlet}(\alpha)$: the topic proportions of each document are governed by a dirichlet distribution with parameter α.

When $\alpha = .1$
Why does LDA “work”?

- LDA trades off two goals.
 1. For each document, allocate its words to as few topics as possible. (α)
 2. For each topic, assign high probability to as few terms as possible. (η)

- These goals are at odds.
 1. Putting a document in a single topic makes (2) hard: All of its words must have probability under that topic.
 2. Putting very few words in each topic makes (1) hard: To cover a document’s words, it must assign many topics to it.

- Trading off these goals finds groups of tightly co-occurring words.
LDA example

- Data: UK House of Commons’ debates (PMQs)
 - \(\approx 30000 \) parliamentary speeches from 1997 to 2015
 - \(\approx 3000 \) unique words
 - \(\approx 2m \) total words

- Note that I have already made a number of sample selection decisions
 - Only PMQs (\(\approx 3\% \) of total speeches)
 - Removed frequently occurring & very rare words
 - All words have been stemmed

- Estimate a range of topic models (\(K \in \{20, 30, ..., 100\} \)) using the topicmodels package
LDA example

Speech length

Speeches by party

words by month
Implementation in R (via quanteda)

```r
library(quanteda)

## Create corpus
speechCorpus <- corpus(pmq, text_field = "Speech")

## Create and trim DFM
speechDFM <- dfm(speechCorpus,
                 remove = stopwords("en"), stem = T)
speechDFM <- dfm_trim(speechDFM, min_termfreq = 5)

## Convert for usage in 'topicmodels' package
tmDFM <- convert(speechDFM, to = 'topicmodels')

## Estimate LDA
ldaOut <- LDA(tmDFM, k = 60)

save(ldaOut, file = "ldaOut_60.Rdata")
```
LDA example

We will make use of the following score to visualise the posterior topics:

\[
\text{term-score}_{k,v} = \beta_{k,v} \log \left(\frac{\beta_{k,v}}{\left(\prod_{j=1}^{K} \beta_{j,v} \right)^{1/K}} \right)
\]

This formulation is similar to the TFIDF term score, where

- the first term, \(\beta_{k,v} \), is the probability of term \(v \) in topic \(k \) and is akin to the term frequency
- the second term is akin to the document frequency (i.e. it down-weights terms that have high probability under all topics)
LDA example
LDA example

Topic 1
Topic 2
Topic 3
Topic 4
Topic 5
Topic 6
Topic 7
Topic 8

Top words:
- Britain
- European
- Union
- War
- Weapon
- Cancer
- Children
- Crime
- Criminal
- Economy
- Economics
- Education
- England
- Finance
- Growth
- Iraq
- Justice
- NHS
- Plan
- Prison
- Regulation
- School
- Security
- Teacher
- Terror
- Terrorist
- Union
- Wait
- War
- Weapon
LDA example
LDA example
LDA example
<table>
<thead>
<tr>
<th>Topic 1</th>
<th>Topic 2</th>
<th>Topic 3</th>
<th>Topic 4</th>
</tr>
</thead>
<tbody>
<tr>
<td>bank</td>
<td>terror</td>
<td>european</td>
<td>school</td>
</tr>
<tr>
<td>financi</td>
<td>terrorist</td>
<td>europ</td>
<td>educ</td>
</tr>
<tr>
<td>regul</td>
<td>secur</td>
<td>britain</td>
<td>children</td>
</tr>
<tr>
<td>england</td>
<td>attack</td>
<td>union</td>
<td>teacher</td>
</tr>
<tr>
<td>crisi</td>
<td>protect</td>
<td>british</td>
<td>pupil</td>
</tr>
<tr>
<td>fiscal</td>
<td>agre</td>
<td>referendum</td>
<td>class</td>
</tr>
<tr>
<td>market</td>
<td>act</td>
<td>constitut</td>
<td>parent</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Topic 5</th>
<th>Topic 6</th>
<th>Topic 7</th>
<th>Topic 8</th>
</tr>
</thead>
<tbody>
<tr>
<td>prison</td>
<td>nhs</td>
<td>plan</td>
<td>iraq</td>
</tr>
<tr>
<td>justic</td>
<td>wait</td>
<td>econom</td>
<td>weapon</td>
</tr>
<tr>
<td>crimin</td>
<td>hospit</td>
<td>economi</td>
<td>war</td>
</tr>
<tr>
<td>crime</td>
<td>cancer</td>
<td>growth</td>
<td>un</td>
</tr>
<tr>
<td>releas</td>
<td>patient</td>
<td>grow</td>
<td>resolut</td>
</tr>
<tr>
<td>court</td>
<td>list</td>
<td>longterm</td>
<td>iraqi</td>
</tr>
<tr>
<td>sentenc</td>
<td>health</td>
<td>deliv</td>
<td>saddam</td>
</tr>
</tbody>
</table>
Research question: Do different electoral systems create incentives for politicians to focus on different aspects of policy?

Catalinac argues that the electoral reform in 1994 in Japan should increase the amount of attention that politicians devote to “policy” rather than “pork”.

“Applying probabilistic topic modeling... shows that candidates for office change tried-and-true electoral strategies when confronted with an electoral reform.”
Questions:

- LDA on 8000 manifestos
 - Are entire manifestos the appropriate unit of analysis? Would sections, or paragraphs, be more appropriate?

- K = 69
 - “We fit the model with 69 topics because this was one of the lowest specifications that produced topics that were fine-grained enough to resemble our quantities of interest.”
 - Seems a little arbitrary! Are 69 topics the appropriate number?

- Is this a good case for topic models? We know the categories of interest ex ante
 - Why not use a dictionary approach here? Or supervised learning?

We will discuss strategies for addressing some of these after the break.
LDA summary

- LDA is a probabilistic model of text. It casts the problem of discovering themes in large document collections as a posterior inference problem.
- It lets us visualize the hidden thematic structure in large collections, and generalize new data to fit into that structure.
- LDA is a simple building block that enables many applications.
- It is popular because organizing and finding patterns in data has become important in the sciences, humanities, industry, and culture.
- We can easily fit these models to massive data.
Evaluating LDA performance

How can we tell how well a given topic model is performing?

Statistical approaches:

- How well does the model predict held-out data?
- Ask which words the model believes will be in a given document and comparing this to the document’s actual word composition
- Splitting texts in half, train a topic model on one half, calculate the held-out likelihood for the other half
- Issues:
 - Prediction is not always important in exploratory or descriptive tasks. We may want models that capture other aspects of the data.
 - There tends to be a negative correlation between quantitative diagnostics such as these and human judgements of topic coherence!
Evaluating LDA performance

Substantive approaches:

- *Semantic validity*
 1. Do a topic contain coherent groups of words?
 2. Does a topic identify a coherent groups of texts that are internally homogenous but distinctive from other topics?

- *Predictive validity*
 1. How well does variation in topic usage correspond to known events?

- *Construct validity*
 1. How well does our measure correlate with other measures?

Here, we will focus on semantic and predictive validity. (Why?)
Predictive validity
Predictive validity

bank.financi.regul.englend.crisi.fiscal.market

Number of words devoted to topic

Northern Rock
Lehman Bros
Greek Debt
Irish bailout
Predictive validity

terror.terrorist.secur.attack.protect.agre.act

Number of words devoted to topic
Predictive validity

terror.terrorist.secur.attack.protect.agre.act

Number of words devoted to topic

September 11th London bombings ISIS seize Mosul
Consider the following texts:

The reforms that we are bringing into the banking system will include greater competition in banking. We will have a judgment from the European Commission soon, which we are supporting, that will allow more competition in British banking. As for the restructuring of the banking system and whether there should be investment banks on one side and retail-only banks on the other, the right hon. Gentleman must remember that Northern Rock was effectively a retail bank and it collapsed. Lehman Brothers was effectively an investment bank without a retail bank and it collapsed. The difference between retail and investment banks is not the cause of the problem. The cause of the problem is that banks have been insufficiently regulated at a global level and we have to set the standards for that for the future. We will be doing that at the G20 Finance Ministers summit in a few weeks' time.

The purpose of this coming before the House is for the Home Secretary to advise us that, in her view, there is an exceptional terrorist threat a grave terrorist threat that either has occurred or is occurring and that the need for action is urgent, but that it has not been possible to assemble the necessary evidence to lay charges within the 28 days. It will then be for the House to vote on the commencement order and agree that an exceptional terrorist incident has occurred. It is not the business of the House to interfere in the individual case, but it should be able to vote simply on whether an exceptional and grave terrorist threat has occurred. Given that the right hon. Gentleman and others have referred to the Civil Contingencies Act 2004 in discussing this issue, I would hope that he understands that this is exactly the same problem that has to be faced in respect of that Act.

We will call these the banking and terrorism texts.
Semantic validity

Expected topic proportion

Banking topics
T error topics

Expected topic proportion

Banking topics
T error topics
Semantic validity

- These plots suggest that our model is picking up at least some properties that we would intuitively expect to see in this particular corpus.
- However, they do not help us to choose between the different models that we have estimated.
- In other words, how should we pick K?
Which K?

Banking topics
Terror topics

Expected topic proportion

Banking topics
Terror topics

Expected topic proportion
Which K?

![Graph showing expected topic proportions for banking and terror topics.](image-url)
Which K?

Expected topic proportion

Banking topics
Terror topics

Expected topic proportion

Banking topics
Terror topics
Which K?

- Banking topics
- Terror topics

Expected topic proportion

- bank.financi.regul.england
- problem.face.deal.mani
- chang.target.need.climat
- terror.terrorist.secur.attack
- reason.howev.point.precis
- forward.propos.possibl.way

45 / 86
Semantic validity (Chang et al. 2009)

Word intrusion: Test if topics have semantic coherence by asking humans identify a spurious word inserted into a topic.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Word 3</th>
<th>Word 4</th>
<th>Word 5</th>
<th>Word 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bank</td>
<td>financ</td>
<td>terror</td>
<td>england</td>
<td>fiscal</td>
<td>market</td>
</tr>
<tr>
<td>2</td>
<td>europe</td>
<td>union</td>
<td>eu</td>
<td>referendum</td>
<td>vote</td>
<td>school</td>
</tr>
<tr>
<td>3</td>
<td>act</td>
<td>deliv</td>
<td>nhs</td>
<td>prison</td>
<td>mr</td>
<td>right</td>
</tr>
</tbody>
</table>

Assumption: When humans find it easy to locate the “intruding” word, the topics are more coherent.
Semantic validity *(Chang et al. 2009)*

Word intrusion: Test if topics have semantic coherence by asking humans identify a spurious word inserted into a topic.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Word 3</th>
<th>Word 4</th>
<th>Word 5</th>
<th>Word 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bank</td>
<td>financ</td>
<td>terror</td>
<td>england</td>
<td>fiscal</td>
<td>market</td>
</tr>
<tr>
<td>2</td>
<td>europe</td>
<td>union</td>
<td>eu</td>
<td>referendum</td>
<td>vote</td>
<td>school</td>
</tr>
<tr>
<td>3</td>
<td>act</td>
<td>deliv</td>
<td>nhs</td>
<td>prison</td>
<td>mr</td>
<td>right</td>
</tr>
</tbody>
</table>

Assumption: When humans find it easy to locate the “intruding” word, the topics are more coherent.
Semantic validity (Chang et al. 2009)

Topic intrusion: Test if the association between topics and documents makes sense by asking humans to identify a topic that was not associated with a document.

Reforms to the banking system are an essential part of dealing with the crisis, and delivering lasting and sustainable growth to the economy. Without these changes, we will be weaker, we will be less well respected abroad, and we will be poorer.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Word 3</th>
<th>Word 4</th>
<th>Word 5</th>
<th>Word 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bank</td>
<td>financ</td>
<td>regul</td>
<td>england</td>
<td>fiscal</td>
<td>market</td>
</tr>
<tr>
<td>2</td>
<td>plan</td>
<td>econom</td>
<td>growth</td>
<td>longterm</td>
<td>deliv</td>
<td>sector</td>
</tr>
<tr>
<td>3</td>
<td>school</td>
<td>educ</td>
<td>children</td>
<td>teacher</td>
<td>pupil</td>
<td>class</td>
</tr>
</tbody>
</table>

Assumption: When humans find it easy to locate the “intruding” *topic*, the mappings are more sensible.
Semantic validity (Chang et al. 2009)

Topic intrusion: Test if the association between topics and documents makes sense by asking humans to identify a topic that was not associated with a document.

Reforms to the banking system are an essential part of dealing with the crisis, and delivering lasting and sustainable growth to the economy. Without these changes, we will be weaker, we will be less well respected abroad, and we will be poorer.

<table>
<thead>
<tr>
<th>Topic</th>
<th>Word 1</th>
<th>Word 2</th>
<th>Word 3</th>
<th>Word 4</th>
<th>Word 5</th>
<th>Word 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>bank</td>
<td>financ</td>
<td>regul</td>
<td>england</td>
<td>fiscal</td>
<td>market</td>
</tr>
<tr>
<td>2</td>
<td>plan</td>
<td>econom</td>
<td>growth</td>
<td>longterm</td>
<td>deliv</td>
<td>sector</td>
</tr>
<tr>
<td>3</td>
<td>school</td>
<td>educ</td>
<td>children</td>
<td>teacher</td>
<td>pupil</td>
<td>class</td>
</tr>
</tbody>
</table>

Assumption: When humans find it easy to locate the “intruding” topic, the mappings are more sensible.
Semantic validity (Chang et al. 2009)

Conclusion:

“Topic models which perform better on held-out likelihood may infer less semantically meaningful topics.” (Chang et al. 2009.)
Semantic validity (2)

- Semantic validity requires that topics are coherent and meaningful.
 - We hope that texts assigned to a given topic are homogenous
 - We hope that texts from different topics are distinctive

- We can assess the quality of the topics by asking humans whether pairs of documents with high probability under the same topic are related to one another

- One option would be to crowdsource validation using online workers
 - Benoit et. al (2015) Crowd-Sourced Text Analysis: Reproducible and Agile Production of Political Data

- Another option is to mercilessly exploit a class of students (not you, don’t worry)
Semantic validity (revisited)

Your task is simply to read these short texts, and use the answer box to tell me whether the pair of speeches you are looking at are 'unrelated', 'loosely related' or 'closely related' in terms of the topics under consideration.

Text one:
That is total complacency about one month’s figures when the Prime Minister has had five years of failure under this Government. Under this Prime Minister we are a country of food banks and bank bonuses; a country of tax cuts for millionaires while millions are paying more. Is not his biggest broken promise of all that we are all in it together?

Text two:
This is totally desperate stuff because the Prime Minister has nothing to say about the cost of living crisis. That is the reality, and his reshuffle had nothing to do with the country and everything to do with his party. After four years of this Government, we have a recovery that people cannot feel, a cost of living crisis that people cannot deny, and a Prime Minister whom people cannot believe.
Semantic validity (revisited)

- Sample pairs of speeches from the posterior distribution
 - 5 pairs from the same topic, for each topic
 - 5 pairs from different topics, for each topic
- Randomly present to human coders, asking whether they are:
 - closely related (3); loosely related (2); unrelated (1)
- Calculate the Cluster Quality for the topic by regressing

\[Related_{ik} = \alpha + \beta_k \times SameTopic_{ik} \]

- \(\beta_k \) is an estimate of the cluster quality of topic model \(k \)
 - i.e. the difference between relatedness of same-topic and different-topic pairs
- Repeat for each value of \(K \)
Semantic validity (revisited)
An application

- Once we are happy with the topic model we have estimated, we can use the posterior distribution in various ways:
 - Visualisation
 - Information retrieval
 - Corpus exploration
 - Similarity
 - Dimensionality reduction

- In this example, we can use the posterior distribution of document-topic proportions to ask: Which MPs are most active at asking questions in each topic?

\[
MPAttention_{i,k} = \frac{MPWords_{i,k}}{\sum_{1}^{K} MPWords_{i,k}}
\]
An application

bank.financi.regul
Christopher Gill
Malcolm Wicks
Tom Greatrex
Alasdair Morgan
Nick Herbert
Karl McCartney
Donald Gorrie
Justin Tomlinson
John Townend
Howard Flight
Derek Foster
Lindsay Roy

terror.terrorist.secur
Shahid Malik
Parmjit Gill
George Mudie
Jonathan Djanogly
James Brokenshire
Tobias Ellwood
Brian Wilson
John Maples
Seamus Mallon
Ann Keen
Stephen Barclay
Pat McFadden

European.europ.britain
David Lock
William Cash
Alistair Darling
Denzil Davies
David Heathcoat-Amory
David Wilshire
David Davis
Giles Radice
Ann Winterton
Jenny Jones
Dale Campbell-Savours
Jacob Rees-Mogg

School.edu.children
Christine Butler
Melanie Johnson
Julie Kirkbride
Sam Gyimah
Malcolm Moss
Paul Clark
Ian Liddell-Grainger
Michael Heseltine
Stephen Hammond
Chris Pond
Ivan Henderson
Derek Conway

Prison.justic.crimin
Jack Lopresti
Kevin McNamara
Alan Clark
Chris Skidmore
Charles Walker
Jeremy Wright
Tess Kingham
Sarah Champion
Philip Davies
Kali Mountford
Mike Wood
Lynda Waltho

NHS.wait.hospit
Julia Goldsworthy
Seema Malhotra
Michael Penning
Nick Hurd
Virendra Sharma
Tim Farron
Bill Esterson
John Penrose
Malcolm Chisholm
Grant Shapps
Marion Roe
Mike Thornton

Plan.economi.econom
Chloe Smith
Conor Burns
Donald Gorrie
Guy Opperman
Karen Bradley
Neil Carmichael
Wayne David
Michael Colvin
Michael Ellis
Anne Milton
John Stevenson
Sarah Newton

Iraq.weapon.war
Alan Howarth
Chris Smith
Tony Worthington
Terry Davis
George Foulkes
Jonathan Sayeed
Melanie Johnson
Denzil Davies
Paul Stinchcombe
Adam Price
Kevin Hughes
Tony Benn
Beyond Latent Dirichlet Allocation
LDA summary

- LDA is a simple topic model.
- It can be used to find topics that describe a corpus.
- Each document exhibits multiple topics.
- There are several ways to extend this model.
Extending LDA

- LDA can be embedded in more complicate models, embodying further intuitions about the structure of the texts.
 - E.g., it can be used in models that account for syntax, authorship, word sense, dynamics, correlation, hierarchies, and other structure.

- The data generating distribution can be changed. We can apply mixed-membership assumptions to many kinds of data.
 - E.g., we can build models of images, social networks, music, purchase histories, computer code, genetic data, and other types.

- The posterior can be used in creative ways.
 - E.g., we can use inferences in information retrieval, recommendation, similarity, visualization, summarization, and other applications.
Extending LDA

- These different kinds of extensions can be combined.
- To give a sense of how LDA can be extended, we’ll look at several examples of major extensions.
- We will discuss
 - Correlated topic models
 - Dynamic topic models
 - Structural topic models
Correlated and Dynamic Topic Models
Correlated topic model

- The Dirichlet is a distribution on the simplex, positive vectors that sum to 1.
- It assumes that components are nearly independent.
- In real data, an article about fossil fuels is more likely to also be about geology than about genetics.
- The logistic normal is a distribution on the simplex that can model dependence between components (Aitchison, 1980).
- Re-parameterise so that the (log of the) parameters of the topic-proportions multinomial are drawn from a multivariate Gaussian distribution.
Correlated topic model

where the first node is logistic normal prior.

- Draw topic proportions from a logistic normal.
- This allows topic occurrences to exhibit correlation.
- Provides a “map” of topics and how they are related
- Provides a better fit to text data, but computation is more complex
LDA topic correlation
CTM pros and cons

Advantages:

1. Probably a more reasonable approximation of the “true” data generating process of documents
2. Possible that correlations between topics might be a quantity of interest
3. CTM tends to have better statistical fit to data than LDA

Disadvantages:

1. CTM is considerably more computationally demanding than LDA
2. CTM tends to have lower topic interpretability than LDA
Dynamic topic model

- LDA assumes that the order of documents does not matter.
- Not appropriate for sequential corpora (e.g., that span hundreds of years)
- We may want to track how language changes over time.
 - How has the language used to describe neuroscience developed from “The Brain of Professor Laborde” (1903) to “Reshaping the Cortical Motor Map by Unmasking Latent Intracortical Connections” (1991)
 - How has the language used to describe love developed from “Pride and Prejudice” (1813) to “Eat, Pray, Love” (2006)
- Dynamic topic models let the topics drift in a sequence.
Plate (K) allows topics to “drift” through time.
Dynamic topic models

- Use a logistic normal distribution to model topics evolving over time.
 - The kth topic at time 2 has evolved smoothly from the kth topic at time 1
- As for CTMs, this makes computation more complex. But it lets us make inferences about sequences of documents.
Dynamic topic model example (Mimno and Lafferty, 2006)

“Neuroscience” topic based on DTM of 30,000 articles from Science
Summary: Correlated and dynamic topic models

- The Dirichlet assumption on topics and topic proportions makes strong conditional independence assumptions about the data.
- The **correlated topic model** uses a logistic normal on the topic proportions to find patterns in how topics tend to co-occur.
- The **dynamic topic model** uses a logistic normal in a linear dynamic model to capture how topics change over time.
- What’s the catch? These models are harder to compute.
Structural Topic Model
Structural topic model

- Typically, when estimating topic models we are interested in how some covariate is associated with the prevalence of topic usage (Gender, date, political party, etc).

- The Structural Topic Model (STM) allows for the inclusion of arbitrary covariates of interest into the generative model.

- The addition of covariates provides structure to the prior distributions.
 1. Benefit 1: improves the estimation of the topics by allowing documents to share information according to the covariates (known as ‘partial pooling’ of parameters).
 2. Benefit 2: the relationship between covariates and latent topics is most frequently the estimand of interest, so we should include this in the estimation procedure.
Structural topic model

How does it differ from LDA?

- As with the CTM, topics within the STM can be **correlated**
- **Topic prevalence** is allowed to vary according to the covariates X
 - Each document has its own prior distribution over topics, which is defined by its covariates, rather than sharing a global mean
- **Topical content** can also vary according to the covariates Y
 - Word use *within* a topic can differ for different groups of speakers/writers
Structural topic model

Topic prevalence model:

- Draw topic proportions from a logistic normal generalised linear model based on covariates X
- This allows the expected document-topic proportions to vary by covariates, rather than from a single shared prior
Structural topic model

Topical content model:

- The β coefficients, which indicate the distribution over words for a given topic, are allowed to vary according to the covariates Y.
- This allows us to estimate how different covariates affect the words used within a given topic.
Structural Topic Model (example)

- In the legislative domain, we might be interested in the degree to which MPs from different parties represent distinct interests in their parliamentary questions.
- We can use the STM to analyse how topic prevalence varies by party.

```r
## Set topic count and estimate STM
K <- 60
stmOut <- stm(
  documents = speechDFM,
  data= docvars(speechDFM),
  prevalence = ~party,
  content = ~party,
  K = K,
  seed = 123)
```
Structural Topic Model (example)

- Specify a linear model with:
 - the topic proportions of speech \(d\), by legislator \(i\) as the outcome
 - the party of legislator \(i\) as the predictor

\[
\theta_{dk} = \alpha + \gamma_{1k} \times \text{labour}_{d(i)}
\]

- The \(\gamma_k\) coefficients give the estimated difference in topic proportions for Labour and Conservative legislators for each topic
Labour vs Conservative topic differences

Marginal effect of being a Labour MP

Topics:
- Labour: business, bank, small, deficit, sort, biggest, minist, another, stand, european, union, europ, control, risk, describe, hospital, trust, NHS, northern, ireland, agreement, legisl, behaviour, court, service, cancer, health, service, area, fund, security, threat, prevent, follow, entire, organising.

Conservative: Iraq, war, UN, legisl, war, court, northern, ireland, agreement, school, education, teacher, provide, area, fund, security, threat, prevent, follow, entire, organising.
Differential use of 'austerity' and 'deficit' over time

- Word use more Conservative
- Word use more Labour

Estimated difference in word use

Date

2011 2012 2013 2014
Other “Topic” Models

Although developed for text data, topic models are more generally just a form of a Bayesian mixed-membership model.

Industrious researchers have applied this machinery to many other types of data.

All that is required is constructing a feature matrix using the appropriate data.
Other “Topic” Models (Mauch et al, 2015)

Application: Topic model of 17,000 *recordings* from the US Billboard Hot 100 from 1960 to 2010

Features: timbre; harmony; chord progressions; etc
Summary
Topic Model Summary

Topic models assume:

- That there are K topics shared by a corpus collection.
- That each document exhibits the topics with different proportions.
- That each word is drawn from one topic.
- That we can *discover* the structure that best explain a corpus.

Topic models can be adapted to many settings

- Relax assumptions
- Combine models
- Model more complex data
Implementations of topic models in R

Incomplete list:

- topicmodels
- lda
- stm
- stm
- mallet