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Today’s lecture

e Similarity

e Difference

e Supervised Learning for Text
e Naive Bayes Classification

¢ Validation

e Conclusion
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Motivating Example

How similar are these two modules?

[1] "Causal Inference (PUBL0050)"

[1] "This course provides an introduction to statistical methods used for causal inference in the social
sciences. We will be concerned with understanding how and when it is possible to make causal claims in empirical
research. In particular, we will focus on understanding which assumptions are necessary for giving research a
causal interpretation, and on learning a range of approaches that can be used..."

[1] "Quantitative Text Analysis for Social Science (PUBL0099)"

[1] "Growth of text data in recent years, and the development of a set of sophisticated tools for analysing that
data, offers important opportunities for social scientists to study questions that were previously amenable to
only qualitative analyses.\n\nThis module will allow students to take advantage of these opportunities by
providing them with an understanding of, and ability to apply, tools of quantitative text analysis..."

We will use data from the universe of modules taught at UCL to evaluate the similarity
between these courses.


https://www.ucl.ac.uk/module-catalogue/

"*Modite°catalogue

UCL’s Module Catalogue is a resource for both staff and students, and provides summary
information on all of the modules running at the University during the academic year
2022/23.

Important information B

The catalogue has been updated with key information about the modules that will run during the
2022/23 academic session. Current and prospective students can browse through the catalogue to
consider possible module choices for the coming year.

Please note, information in the catalogue is subject to change as teaching and assessment arrangements
for 2022/23 may need to be adjusted in line with the Teaching and Assessment Operating Model.

Centrally managed exam durations will be provided on students' individual exam timetables. Arrangements
for locally managed exams and tests will be confirmed by the teaching department for the module.

f you are a current student, the module catalogue will help you to find information about modules within your
lepartment and across UCL. The module catalogue may also be useful if you are a prospective student and want
o know more about the modules available if you take a particular course.

‘ou can search for modules by department, title, keywords, codes and/or.credit value
Cookie settings

Useful links

o Disclaimer

o Glossary of terminology

e Modules not included in the catal
o Student module selection

o Your UCL education in the 2022/:
academic year

Sustainability

For a list of modules related to climate
change as well as social and environm
sustainability at UCL, type 'climate' or
'sustainability’ into the search. Visit
Sustainable UCL for information on ext
curricular activity on sustainability.



Similarity



Vector Space Model

e We previously represented our text data as a document-feature matrix
= Rows: Documents
= Columns: Features

e Each document is therefore described by a vector of word counts

e This representation allows us to measure several important properties of our
documents

Vectors notation
We denote a vector representation of a document using a bold letter:

a={aa,...,as}

where a; isthe number of times feature 1 appearsin the document, a; isthe number of times feature 2 appears in the
document, and so on.




e |dea: Each document can be represented by a vector of (weighted) feature counts, and
that these vectors can be evaluated using similarity metrics

e Adocument’s vector is simply (for now) it’s row in the document-feature matrix

e Key question: how do we measure distance or similarity between the vector
representation of two (or more) different documents?



There are many different metrics we might use to capture similarity/difference between
texts:

1. Editdistances

2. Inner product

3. Euclidean distance

4

. Cosine similarity

The choice of metric comes down to an assumption about which kinds of differences are
most important to consider when comparing documents.



Edit Distance

e Edit distances measure the similarity/difference between text strings

e Acommonly used edit distance is the Levenshtein distance

Measures the minimal number of operations (replacing, inserting, or deleting) required
to transform one string into another

Example: the Levenshtein distance between “kitten” and “sitting” is 3
= kitten G sitten (substitute “k” for “s”)
= sitten Gd sittin (substitute “e” for “i”)
= sittin & sitting (insert “g” at the end)

* Inr:
X <- c("kitten", "sitting")
adist(x)
[,11 [,2]

[1,] 0 3

[2,] 3 0

e Generally not used in large scale applications because computationally burdensome to
implement on long texts



Inner Product

Inner product
The inner product, or “dot” product, between two vectors is the sum of the element-wise multiplication of the vectors:

a-b=a’b
=aib; + arby+. .. +asb;
NB: dot product is a scalar

NB: When the vectors are dichotomized document-feature matrices (only Os and 1s), then the inner product gives the number
of features that the two documents share in common.

Example

Imagine three documents with a six-word vocabulary:

causal estimate identification text document feature

Document a 2 3 3 0 0 1
Documentb 2 0 0 B 2 B
Document c 1 2 1 1 0 1




Euclidean Distance

Euclidean Distance

The Euclidean Distance between two document vectors,a andb , is given by:

J
Z(q,- - b
j=1

lla — bl

d(a,b)

Where J isthe total number of features in the dfm.

e The Euclidean distance is based on the Pythagorean theorem

e Similar problem to the inner product: sensitive to document length



Euclidean Distance Illustration




Euclidean Distance Illustration




Cosine Similarity

e Measures of document similarity should not be sensitive to the number of words in
each of the documents

= We don’t want long documents to be “more similar” than shorter documents just as
a function of length

e Anatural way to adapt the inner product measure is to normalise by document length,
which we do by calculating the magnitude of the document vectors

e Cosine similarity is a measure of similarity that is based on the normalized inner
product of two vectors
e |t can beinterpreted as...
= ...anormalized version of the inner product or Euclidean distance

= ...the cosine of the angle between the two vectors



Cosine Similarity

Cosine similarity

The cosine similarity (cos(f) ) between two vectorsa andb is defined as:

a-b

)= —
oSO = Tal vl

where 8 is the angle between the two vectors and ||a|| and ||b]|| are the magnitudes of the vectorsa andb ,
respectively.
Vector Magnitude (or “length”)

The magnitude of a vector (also known as the “length”) is the square-root of the inner product of the vector with itself:

[la]| = ya-a

— 2 2 2
= \/al + a3+...+d}




Interpretation

The value of cosine similarity ranges from-1to 1

e Avalue of 1 indicates that the vectors are identical
e Avalue of 0 indicates that the vectors are orthogonal (i.e., not similar at all)

e Avalue of -1 indicating that the vectors are diametrically opposed.

Thus, the closer the value is to 1, the more similar the vectors are.

Calculated for vectors of word counts (or any positively-valued vectors), the cosine
similarity ranges from 0 to 1.



Cosine Similarity Illustration

cos(0)




Cosine Similarity Illustration

cos(0)




Cosine Similarity Illustration

cos(0




Module Catalogue Data

str(modules)

tibble [6,248 x 10] (S3: tbl df/tbl/data.frame)

$ teaching_department : chr [1:6248] "Greek and Latin" "Greek and Latin" "Bartlett School of Sustainable (
$ level : num [1:6248] 5 4 75 7 7 47 7717
$ intended teaching term: chr [1:6248] "Term 1|Term 2" "Term 1" "Term 1" "Term 2"
$ credit_value : chr [1:6248] "15" "15" "15" "30"
$ mode : chr [1:6248] "" "" "" "" _..
$ subject : chr [1:6248] "Ancient Greek|Ancient Languages and Cultures|Classics" "Ancient Gre
$ keywords : chr [1:6248] "ANCIENT GREEK|LANGUAGE" "ANCIENT GREEK|LANGUAGE" "Infrastructure fii
$ title : chr [1:6248] "Advanced Greek A (GREK0009)" "Greek for Beginners A (GREK0002)" "Inj
$ module_description : chr [1:6248] "Teaching Delivery: This module is taught in 20 bi-weekly lectures al
$ code : chr [1:6248] "GREK0009" "GREK0002" "BCPM0016" "BARC0135"

modules$module description[modules$code == "PUBL0099"]

[1] "Growth of text data in recent years, and the development of a set of sophisticated tools for analysing f
modules$module description[modules$code == "PUBL0050"]

[1] "This course provides an introduction to statistical methods used for causal inference in the social scie

Question: Which other modules at UCL are most similar to these two modules?



Cosine Similarity - Application

# Create a corpus object from module catalogue data
modules corpus <- corpus(modules,
text field = "module description",
docid_field = "code")

# Convert modules data into a dfm

modules _dfm <- modules_corpus %>%
tokens () %>%
dfm()

# Calculate the cosine similarity between PUBL0050 and all other modules
cosine_sim 50 <- textstat_simil(x = modules_dfm,
y = modules_dfm[modules$code == "PUBL0050",],
method = "cosine")

head(cosine_sim 50)

PUBLO0050
GREK0009 0.6801510
GREK0002 0.6209725
BCPM0016 0.5782462
BARCO0135 0.5060876
BCPM0036 0.4374233
BIDI0002 0.6731816

PUBL0099

# Calculate the cosine similarity between PUBL0099 and all other modules
cosine_sim 99 <- textstat simil(x = modules_dfm,
y = modules_dfm[modules$code == "PUBL0099",],
method = "cosine")



Cosine Similarity - Application
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Cosine Similarity - Application

Which modules are most similar to PUBL0050?

# Create a new variable in original data frame
modules$cosine _sim 50 <- as.numeric(cosine_sim 50)

# Arrange the data.frame in order of similarity an
modules %>%

arrange(-cosine_sim 50) %>%

select(title)

Which modules are most similar to PUBL0099?

# Create a new variable in original data frame
modules$cosine_sim 99 <- as.numeric(cosine_sim_ 99)

# Arrange the data.frame in order of similarity an
modules %>%

arrange(-cosine_sim 99) %>%

select(title)

# A tibble: 6,248 x 1

FH =

© VW oo oYU WN R

title

<chr>

Causal Inference (PUBL0050)

Research Methods and Skills (ANTH0104)
Regression Modelling (IEHC0050)

Selected Topics in Statistics (STAT0017)
Dissertation - MSc CPIPP (PHAY0053)

Advanced Photonics Devices (ELEC0109)
User-Centred Data Visualization (PSYC0102)
Introduction to Assessment (MDSC0002)
Quantitative Methods and Mathematical Thinking
Core Principles of Mental Health Research (PSBS
i 6,238 more rows

# A tibble: 6,248 x 1

-

DOV 0o oYU WN R

title

<chr>

Quantitative Text Analysis for Social Science (
Archaeological Glass and Glazes (ARCL0099)
User-Centred Data Visualization (PSYC0102)
Understanding and Analysing Data (SESS0006)
Understanding and Analysing Data (SEES0107)
Data Analysis (POLS0010)

Laboratory and Instrumental Skills in Archaeolo
The Anthropology of Violent Aftermaths (ANTHO013
Fashion Cultures (LITC0044)

Anthrannlaav nf Pnliticas. Vialence and Crime (A



Misleading Word Counts

Why do we recover so many strange matches for our PUBL0050 and PUBL0099

documents?

Let’s compare the most common features of the following four modules:

PUBLO0099 - Quantitative Text Analysis for Social Science

topfeatures(modules_dfm[modules$code=="PUBL0099", ]

PUBLO0050 - Causal Inference

topfeatures(modules_dfm[modules$code=="PUBL0050", ]

ELEC0109 - Advanced Photonics Devices

topfeatures(modules_dfm[modules$code=="ELEC0109", ]

ARCLO0099 - Archaeological Glass and Glazes

topfeatures(modules_dfm[modules$code=="ARCL0099", ]
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Feature selection matters! Similarities here are being driven by substantively unimportant

words.



Weighted Vectors

The bag-of-words representation characterises documents according to the raw counts
of each word

The critical problem with using raw term frequency is that all terms are considered
equally important when it comes to assessing similarity

One way of avoiding this problem is to weight the vectors of word counts in ways that
make our text representations more informative

There are several strategies for weighting the word vectors that represent our
documents, the most common of which is tf-idf weighting



Tf-idf intuition

e Tf-idf stands for “term-frequency-inverse-document-frequency”

e Tf-idf weighting can improve our representations of documents because it assigns
higher weights to...

= ... words that are common in a given document (“term-frequency”) and

= ... words that are rare in the corpus as a whole (“inverse-document-frequency”)
* Down-weighed words include...

= _..stop words (e.g. and, if, the, but, etc) and also...

= ... terms that are domain-specific but used frequently across documents
(e.g. module, class, assessment, exam)

e Up-weighted terms are therefore those words that are more distinctive and thus are
more useful for characterising a given text



TF-idf

Term-frequency-inverse-document-frequency (tf-idf)

The tf-idf weighting scheme assigns to feature j a weight in document i according to:
tf—idfw' = W,‘J X ldﬁ

N
= Wij x log(—-)
J df]‘

e W;; isthenumber of times featurej appears in documenti
e df; isthe number of documents in the corpus that contain feature j

e N isthe total number of documents

NB: tf-idf is specific to a feature in a document

Implications
tf-idfw' will be...

1. ...highest when feature j occurs many times in a small number of documents
2. ...lower when featurej occurs few times in a document, or occurs in many documents

3. ...lowest when feature j occurs in virtually all documents



Tf-idf - Application

# Convert modules data into a dfm *with tf-idf wieghts*
modules_dfm_tfidf <- modules_corpus %>%

tokens () %>%

dfm() %>%

dfm_tfidf()

modules_dfm_ tfidf

Document-feature matrix of: 6,248 documents, 35,483 features (99.68% sparse) and 8 docvars.

features
docs teaching delivery : this module is taught
GREK0009 0.8071821 1.083091 2.74080 0.3076292 0.5888072 0.3026049 1.791841
GREK0002 1.6143641 1.083091 1.64448 0.0769073 0.3680045 0.1513024 1.791841
BCPM0016 0 1.083091 0.54816 0.2307219 0.2208027 0.1513024 0
BARCO0135 0 0 0.82224 0.0769073 0 0.3026049 0
BCPM0036 0 0 1.09632 0.0769073 0.0736009 0 0
BIDI0O002 0 0 0.27408 0.2307219 0.2944036 0.1513024 0
features
docs in 20 bi-weekly
GREK0009 0.43350179 1.851258 2.453318
GREK0002 0.07881851 1.851258 2.453318
BCPM0016 0.03940925 0 0
BARCO0135 0 0 0
BCPM0036 0.03940925 0 0
BIDI0002 0.15763701 0 0

[ reached max ndoc ... 6,242 more documents, reached max_nfeat ... 35,473 more features ]



Tf-idf - Application

What are the features with the highest tf-idf scores for our four modules?

PUBL0099 - Quantitative Text Analysis for Social Science

topfeatures(modules_dfm tfidf[modules$code=="PUBLO

PUBLO0050 - Causal Inference

topfeatures(modules_dfm tfidf[modules$code=="PUBLO

ELEC0109 - Advanced Photonics Devices

topfeatures(modules_dfm tfidf[modules$code=="ELECO

ARCL0099 - Archaeological Glass and Glazes

topfeatures(modules_dfm tfidf[modules$code=="ARCLO

text
11.992607
collect
4.049778

causal
7.093132
quantitative
4.073971

35.91729
photonic
25.16167

glass
14.753215
chronological
4.285057

digitized quantitative

7.591482
texts
4.030291

causality
5.183242
claims
3.979122

optical
35.64063
liquid
24.78914

glazes
7.591482
siliceous
3.795741

5.431962

regression
5.065593

laser
31.79536
devices
24.23796

pigments
6.989422
ornamental
3.795741

count
5.36359

4.63449

28.



Tf-idf cosine similarity

# Calculate the cosine similarity between PUBL0050 and all other modules
cosine_sim tfidf 50 <- textstat simil(x = modules_dfm tfidf,
y = modules_dfm_tfidf[modules$code == "PUBL0050",],
method = "cosine")

# Calculate the cosine similarity between PUBL0099 and all other modules
cosine sim tfidf 99 <- textstat simil(x = modules_dfm tfidf,
y = modules_dfm_tfidf[modules$code == "PUBL0099",],
method = "cosine")



Tf-idf - Application

Similarity with PUBL0099 tf-idf vector Similarity with PUBL0050 tf-idf vector
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Cosine Similarity - Application

Which modules are most similar to PUBL0050?

# Create a new variable in original data frame
modules$cosine sim tfidf 50 <- as.numeric(cosine_s

# Arrange the data.frame in order of similarity an
modules %>%

arrange(-cosine_sim tfidf 50) %>%

select(title)

Which modules are most similar to PUBL0099?

# Create a new variable in original data frame
modules$cosine_sim tfidf 99 <- as.numeric(cosine_s

# Arrange the data.frame in order of similarity an
modules %>%

arrange(-cosine_sim tfidf 99) %>%

select(title)

# A tibble: 6,248 x 1

FH =

© VW oo oYU WN R

title

<chr>

Causal Inference (PUBL0050)

Causal Analysis in Data Science (POLS0012)
Advanced Quantitative Methods (PHDE(0084)
Quantitative Data Analysis (POLS0083)

Advanced Statistics for Records Research (CHMEO
Understanding and Analysing Data (SESS0006)
Understanding and Analysing Data (SEES0107)
Quantitative and Qualitative Research Methods 1
Statistics for Health Economics (STAT0039)
Introduction to Statistics for Social Research
i 6,238 more rows

# A tibble: 6,248 x 1

-

DOV 0o oYU WN R

title

<chr>

Quantitative Text Analysis for Social Science (
Data Science for Crime Scientists (SECU0050)
Understanding and Analysing Data (SESS0006)
Understanding and Analysing Data (SEES0107)
Data Analysis (POLS0010)

Quantitative Data Analysis (POLS0083)

Literary Linguistics A (ENGLO0042)

Analysing Research Data (IOEF0026)

Middle Bronze Age to the Iron Age in the Near E
Reaearch Methnds — Onantitative (CRENGNN4AR)



Tf-idf Does Not Solve All Problems

Consider these two sentences:

e “Quantitative text analysis is very successful.”

e “Natural language processing is tremendously effective.”

Represented as a DFM:

quantitative text analysis very successful natural language processing
D1 1 1 1 1 1 0 0 0
D2 0 0 0 0 0 1 1 1

The cosine similarity between these vectors is:

a-b

)= — =0
oSO = ialr il

No dfm weighting scheme can address the core problem: the sentences are formed of non-
overlapping sets of words.

WiAa il cAaAn AnAa nAaniarfiil AaldAavnativia +A +hic nralklam wihAan A ~cAancidAr Aard ArahAAA TR~



Cosine Similarity Example

Q Does public opinion affect political speech? (Hager and Hilbig, 2020)
Does learning about the public’s attitudes on a political issue change how much attention politicians pay to thatissue in their
public statements?

Set up:

¢ Politicians in Germany have historically received public opinion research on citizens’ attitudes

¢ Release of the polling data is exogenously determined, providing causal identification (via a regression-discontinuity
design)

o Strategy: Measure the linguistic (cosine) similarity between reports summarising public opinion and political speeches




Cosine Similarity Example

TABLE 2 Effects on Cosine Similarity

Cosine Similarity

(1) (2)

Exposure 0.0137** 0.0128**
(0.0066) (0.0057)

Covariates No Yes
Observations 5,684 5,684
Mean of DV 0.1263
SD of DV 0.0976
Effect size in SD 0.1413 0.1319

Note: The table reports results from a local linear regression around
the release of the opinion reports (optimal bandwidth of 22 days;
Equation 1). The outcome is the cosine similarity between reports
and speeches. The sample is limited to pairs where both speech
document and opinion report address the same topic. In Model 2,
all covariates reported in Table 1 are included. Standard errors in
parentheses are clustered by speech document and by opinion re-
port.

p<.l; *p<.05; **p<.01.

Implication: Public statements of politicians move closer to summaries of public opinion

Y o I DA 2 o N [ —



Difference



Detecting discriminating words

Sometimes we want to characterise differences between documents, not just measuring
the similarity between them.

We want to find a set of words that conveys the distinct content between documents.

We might be interested in, for example, how language use differs between...

1. ...politicians on the left and the right (Diermeier et. al., 2012)
2. ...male and female voters (Cunha, et. al., 2014)

3. ...blog posts written by people in different geographic regions (Eisenstein et. al., 2010)

|dentifying discriminating words between groups is useful because these words tend to
help us characterise the type of language/arguments/linguistic frames that a group
employs.


https://www.cambridge.org/core/journals/british-journal-of-political-science/article/abs/language-and-ideology-in-congress/1063F5509BC2ABC3F9A0E164E58157EE
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087041
https://www.cs.cmu.edu/~nasmith/papers/eisenstein+oconnor+smith+xing.emnlp10.pdf

Word clouds

The high-dimensional nature of natural language means that often the best methods for
detecting discriminating words are those that allow us to visualise differences between
groups.

A very common method for visualising corpus- or group-wide word use is via a word
cloud.
e Aword cloud is a visual representation of the frequency and importance of words in a

given text.

e The size of each word in the cloud reflects its frequency or importance within the text.

e The layout of the words in the cloud is usually random, but it is possible to arrange
terms such that their placement reflects some variation of interest

We will use word clouds to explore the differences between Economics and Political
Science modules.



Word clouds - Application

# Load library for plotting
library(quanteda.textplots)

# Remove stopwords
modules_dfm <- modules_dfm %>% dfm remove(stopwords("en"))

# Subset the modules_dfm object to only modules in PS or Econ
ps_dfm <- modules_dfm[docvars(modules_dfm)$teaching department == "Political Science",]
econ_dfm <- modules dfm[docvars(modules_dfm)$teaching department == "Economics",]

# Create word clouds with top 300 features in each dfm
textplot_wordcloud(ps_dfm, max words = 300)
textplot_wordcloud(econ_dfm, max words = 300)



Word clouds - Application
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Although there are some differences, many words are common across both sets of
document.



Word clouds - Application

library(quanteda.textplots)

# Create a corpus object from module catalogue data
modules corpus <- corpus(modules,
text_field = "module description",
docid field = "code")

# Convert modules data into a difm
ps_econ_dfm tf idf <- modules_corpus %>%
tokens(remove_punct = T) %>%
dfm() %>%
dfm_tfidf()



Word clouds - Application
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The Problem with Word Clouds

Humans can only visualise a limited number of dimensions:

e Width (i.e. x-axis position)
e Height (i.e. y-axis position)

e Depth (i.e. z-axis position, hard for most
people)

e Colour +*

e Shape
e Size
e Opacity

Core problem of word clouds: they do not
take full advantage of the dimensional



Discriminating Words

An alternative approach is to directly visualise the difference in word use across groups.

We need a metric to calculate such differences at the individual feature level. One such
approach is to use the difference in tf-idf scores across groups (Munroe, et. al, 2008).


https://www.cambridge.org/core/journals/political-analysis/article/fightin-words-lexical-feature-selection-and-evaluation-for-identifying-the-content-of-political-conflict/81B3703230D21620B81EB6E2266C7A66
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Discriminating words - Political
Science v History
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Discriminating words - Political
Science v Geography

tf-idf difference

po!itical
internaRRJIFA

s

rights

law
institutiofigestions

ation  ©f

conserv%ﬂ%m@%@ course

meggline Kl
geography
urban

Political Geography
Science

political urban
policy geography
international data
public spatial
politics modelling
rights skills

law change
questions climate
institutions environmental

log(n)

democracy

thinking




Example: Fightin’ words

Partisan Words, 106th Congress, Abortion
(Weighted Log-Odds—-Ratio, Informative Dirichlet Prior)
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Example: Fightin’ words

Partisanship of "iraq", Defense, 106th Congress
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Fig. 9 Dynamic partisanship of “iraq” in the context of defense.
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Supervised Learning for
Text



Motivation - Is this a curry?



Motivation

What is a curry?
Oxford English Dictionary:

“A preparation of meat, fish, fruit, or vegetables, cooked with a quantity of bruised
spices and turmeric, and used as a relish or flavouring, esp. for dishes composed of or
served with rice. Hence, a curry = a dish or stew (of rice, meat, etc.) flavoured with
this preparation (or with curry-powder).”




Motivation

e |f a curry can be defined by the spices a dish contains, then we ought to be able to
predict whether a recipe is a curry from ingredients listed in recipes

e We will evaluate the probability that #TheStew is a curry by training a curry classifier on
a set of recipes

e We will use data on 9384 recipes from the BBC recipe archive
e This data includes information on

= Recipe names

= Recipeingredients

= Recipeinstructions



Motivation

Our data includes information on each recipe:

recipes$recipe name[1]
[1] "Mustard and thyme crusted rib-eye of beef "
recipes$ingredients[1]

[1] "2.25kg/51b rib-eye of beef, boned and rolled 450ml/A% pint red wine 150ml/A% pint red wine vinegar 1 tbsp
sugar 1 tsp ground allspice 2 bay leaves 1 tbsp chopped fresh thyme 2 tbsp black peppercorns, crushed 2 tbsp
English or Dijon mustard"

recipes$directions[1]

[1] "Place the rib-eye of beef into a large non-metallic dish. In a jug, mix together the red wine, vinegar,
sugar, allspice, bay leaf and half of the thyme until well combined. Pour the mixture over the beef, turning to
coat the joint evenly in the liquid. Cover the dish loosely with cling film and set aside to marinate in the
fridge for at least four hours, turning occasionally. (The beef can be marinated for up to two days.) When the
beef is ready to cook, preheat the oven to 190C/375F/Gas 5. Lift the beef from the marinade, allowing any excess
liquid to drip off, and place on a plate, loosely covered, until the meat has returned to room temperature.
Sprinkle the crushed peppercorns and the remaining thyme onto a plate. Spread the mustard evenly all over the
surface of the beef, then roll the beef in the peppercorn and thyme mixture to coat. Place the crusted beef into
a roasting tin and roast in the oven for 1 hour 20 minutes (for medium-rare) or 1 hour 50 minutes (for well-
done). Meanwhile, for the horseradish cream, mix the crA"me frA¢iche, creamed horseradish, mustard and chives
together in a bowl until well combined. Season, to taste, with salt and freshly ground black pepper, then spoon
into a serving dish and chill until needed. When the beef is cooked to your liking, transfer to a warmed platter
and cover with aluminium foil, then set aside to rest in a warm place for 25-30 minutes. To serve, carve the
rib-eye of beef into slices and arrange on warmed plates. Spoon the roasted root vegetables alongside. Serve

with the horseradish cream."
We also have “hand-coded” information on whether each dish is really a curry:
table(recipes$curry)

Cuvrver NIn+ Cuavrvyr



Defining a curry

head(recipes$recipe name[recipesS$curry == "Curry"])

[1] "Venison massaman curry"
[3] "Aromatic beef curry"
[5] "Aubergine curry"

"Almond and cauliflower korma curry"
"Aromatic blackeye bean curry"
"Bangladeshi venison curry"



A curry dictionary

Given that we have some idea of the concept we would like to measure, perhaps we can
just use a dictionary:

## Convert to corpus
recipe_corpus <- corpus(recipes, text field = "ingredients")

# Tokenize
recipe_tokens <- tokens(recipe_corpus, remove punct = TRUE,
remove_numbers = TRUE, remove_symbols = TRUE) %>%
tokens_remove(c(stopwords("en"),
"m1","f1","x","mla","m1£1","g", "kglb",

"tsp","tbsp","goz","oz", "glb", "ga", "a"))

# Convert to DFM
recipe_dfm <- recipe tokens %>%
dfm() %>%

dfm trim(max_ docfreq = .3,
min_docfreq = .002,
docfreq type = "prop")
topfeatures(recipe_dfm, 20)
finely sugar flour sliced garlic peeled cut freerange
3707 3118 2486 2456 2362 2333 2299 2196
leaves juice white red large extra caster seeds
1859 1757 1730 1673 1658 1626 1615 1541
small vegetable onion plain

1498 1493 1485 1450



A curry dictionary

curry dict <- dictionary(list(curry = c("spices",
"turmeric")))

curry dfm <- dfm lookup(recipe dfm, dictionary = curry dict)

curry_dfm$recipe name[order(curry dfm[,1], decreasing = T)[1:10]]

[1] "Indonesian stir-fried rice (Nasi goreng)"

[2] "Pineapple, prawn and scallop curry"

[3] "Almond and cauliflower korma curry"

[4] "Aloo panchporan (Stir-fried potatoes tempered with five spices)
[5] "Aromatic beef curry"

[6] "Asian-spiced rice with coriander-crusted lamb and rosemary oil"
[7] "Beef chilli flash-fry with yoghurt rice"

[8] "Beef rendang with mango chutney and sticky rice"

[9] "Beef curry with jasmine rice"

[10] "Beef Madras"



Classification Perfomance

Let’s classify a recipe as a “curry” if it includes any of

our dictionary words

recipes$curry dictionary <- ifelse(as.numeric(curry dfm[,1])

confusion_dictionary <- table(predicted classification

library(caret)

reciy
reciy

true classification

confusionMatrix(confusion dictionary, positive = "Curry")

Confusion Matrix and Statistics

true classification
predicted_classification Curry Not Curry

Curry 95

Not Curry 195

Accuracy : 0.9601
95% CI : (0.956,

No Information Rate : 0.9691

P-Value [Acc > NIR] : 1.000
Kappa : 0.3164

Mcnemar's Test P-Value : 0.438
Sensitivity : 0.32759
Specificity : 0.98032
Pos Pred Value : 0.34672
Neg Pred Value : 0.97859

179
8915

0.964)

Accuracy =

Sensitivity =

Specificity =

Implication:

#True Positives + #

#Observal

#True Po
#True Positives +

#True Nejg
#True Negative + #

e We can pick up some signal with
the dictionary, but we are not
doing a great job of classifying

curries

e Qur sensitiv

ity is a very low

e \We need methods that are

hatter at winrkino niit the



Supervised Learning vs Dictionaries

Supervised learning methods classify documents into pre-defined categories on the basis
of the words they contain.

Supervised learning can be conceptualized as a generalization of dictionary methods

Dictionaries:
= Words associated with each category are pre-specified by the researcher
= Words typically have a weight of either zero or one

= Documents are scored on the basis of words they contain

Supervised learning:
= Words are associated with categories on the basis of pre-labelled training data

= Words have are weighted according to their relative prevalence in each each
category

= Documents are scored on the basis of words they contain

The key difference is that in supervised learning the features associated with each
category (and their relative weight) are learned from the data



Components of Supervised Learning

e Labelled dataset

= |abelled (normally hand-coded) data which categorizes texts into different
categories

= Training set: used to train the classifier
= Test set: used to validate the classifier
e Classification method
= Statistical method to:
o learn the relationship between coded texts and words
o predict unlabeled documents from the words they contain

= Examples: Naive Bayes, Logistic Regression, SVM, tree-based methods, many
others...

e Validation method
= Predictive metrics such as confusion matrix, accuracy, sensitivity, specificity, etc

= Normally we use a specific type of validation known as cross-validation



Creating a labelled datset

How do we obtain a labelled set?

e External sources of annotation, e.g.
= Party labels for election manifestos

= Disputed authorship of Federalist papers estimated based on known authors of
other documents

e Expert annotation, e.g.
= |n many projects, undergraduate students (“expertise” comes from training)
= Existing expert annotations, e.g. Comparative Manifesto Project

e Crowd-sourced coding, e.g.
= Ask random people on the internet to code texts into categories

= Tends to rely on the “wisdom of crowds” hypothesis: aggregated judgments of non-
experts converge to judgments of experts at much lower cost

For the purposes of the running example, we are cheating a bit by assuming that any dish
whose title contains the word “curry” is, in fact, a curry.



Naive Bayes
Classification



Language Models

Probabilistic language models describe a story about how documents are generated
using probability

This data-generating process is based on a set of unknown parameters which we infer
based on the data

Once we have inferred values for the parameters, we can reverse the data-generating
process and calculate the probability that any given document was generated by a
particular language model

The Naive Bayes text classification model is one example of a generative language
model. In Naive Bayes:

a. Estimate separate language models for each category of interest
b. Calculate probability that each text was generated by each model

c. Assign the text to the category for which it has the highest probability



Language Models

e The basis of any language model is a probability distribution over words in a
vocabulary.

* A probability distribution over a discrete variable must have three properties
= Each element must be greater than or equal to zero
= Each element must be less than or equal to one

= The sum of the elements must be 1



Language Models

Consider a 6 word vocabulary: “coriander”, “turmeric”, “garlic”, “sugar”, “flour”, “eggs”

When writing a curry recipe, you will

= frequently use the words “coriander”, “turmeric”, and “garlic”

= infrequently use the words “sugar”, “flour”, and “eggs”

When writing a cake recipe, you will
= frequently use the words “sugar”, “flour”, and “eggs”

= infrequently use the words “coriander”, “turmeric”, and “garlic”

e We can represent these different “models” for language using a probability distribution
over the words in the vocabulary:

Model  coriander turmeric garlic sugar flour eggs

Hcurry 0.4 0.25 0.20 0.08 0.04 0.03
Hcake 0.02 0.01 0.01 026 0.4 0.3




Language Models

Model  coriander turmeric garlic sugar flour eggs
Hecurry 0.4 0.25 0.20 0.08 0.04 0.03
Hcake 0.02 0.01 001 026 04 03

Given these models, we can calculate the probability that a given set of word counts
(i.e. a document) would be drawn from each distribution

POl = — f[uw”
&
[T Wit =i

This is the multinomial distribution

u; is the probability of observing word j under a given model

W, isthe number of times word j appears in documenti (i.e. itis an element of a
dfm)

M; isthe total number of words in document i



Language Models

Model  coriander turmeric garlic sugar flour eggs
Hcurry 0.4 0.25 0.20 0.08 0.04 0.03
Hcake 0.02 0.01 001 026 04 03

Imagine we have two documents represented by the following DFM

Document coriander turmeric garlic sugar flour eggs

Wi 6 2 1 1 0 0

W, 1 0 0 4 2 3

Which language model is most likely to have produced each document?



Naive Bayes

Naive Bayes is a model that classifies documents into categories on the basis of the
words they contain

is the posterior distribution - this tells us the probability that document is in category,
given the words in the document and the prior probability of category

is the conditional probability or likelihood - this tells us the probability that we would
observe the words in if the document were from category

is the prior probability that the document is from category - this tells us the probability
of the category of the document, absent any information about the words it contains

is the unconditional probability of the words in document - this tells us the probability
that we would observe the words in across all categories



Naive Bayes

e Generally, we will want to make comparisons of the probabilities between different
classes

meg.ls

e This means that we can drop the term and just focus on the likelihood and the prior
probabilities

e where means “proportional to” (rather than “equal than” for)



Naive Bayes

To work out the whether a document should be labelled as belonging to a particular class,
we therefore need to work out:

e the prior probability () that the document is from category

= This is usually estimated by calculating the proportion of documents of category in
the training data

e the conditional probability or likelihood () of the words in the document occuring in
category

= We already know that we can calculate this probability from the multinomial
distribution!

= Again, because we are only interested in the relative probabilities of different
classes, we can drop the multinomial coefficient

Question: How do we estimate ?



Naive Bayes Estimation

e is the probability that word will occur in documents of category .
e We can estimate these probabilities from our training data:

Example:

 Inthe curry recipes our training data, we observe...
m .. 77 instances of the word “turmeric” ()
= ...10586 total words ()
= ...andso
* In the not-curry recipes our training data, we observe...
= . .148instances of the word “turmeric” ()
= ,.210805 total words ()

= _..andso

e The word “turmeric” is about 10 times more common in curry recipes than other

ynrinNnnNnc



Naive Bayes Estimation - Laplace
Smoothing

What happens when a given word doesn’t appear at all for one of the classes in our
training data?

Imagine that we never observe the word “duck” in the curry recipes in our training data

Then, in our test data, we observe the following sentence:

"For this curry you will need to coat the duck legs with 1 tsp ground turmeric"

Because we multiply together all the individual word probabilities when we calculate
the probability of a sentence occurring in a category, we will get a probability of zero!

Solution: Add one to the counts for each word in each category

This solution is known as “add-one” or “Laplace” smoothing



Why is Naive Bayes “Naive”?
By treating documents as bags of words we are assuming:

e Conditional independence of word counts

= Knowing a document contains one word doesn’t tell us anything about the
probability of observing other words in that document

= e.g. The fact that a recipe includes the word “turmeric” doesn’t make it any more or
less likely that it will also include the word “coriander”

e Positional independence of word counts

= The position of a word within a document doesn’t give us any information about the
category of that document

= e.g. Whether the word “turmeric” appears early or late in the recipe has no effect on
the probability of it being a curry

While this is a very simple model of language which is “wrong”, it is nevertheless useful for
classification.



Naive Bayes Classification

The classification decision made by the Naive Bayes model is simple: we assign document
to the category, , for which it has the highest posterior probability:
where means “which category, , has the maximum posterior probability”.

Intuition:

e Assign documents to categories when the probability of observing the words in that

document are high given the probability distribution for that category (i.e. when is
large)

Assign more documents to categories that contain more documents in the training data
(i.e. whenis large)



Naive Bayes Application

nb output <- textmodel nb(x
y

recipe dfm,

recipe_dfm$curry,

prior = "docfreq")

summary (nb_output)

Call:
textmodel nb.dfm(x

Class Priors:
(showing first 2 elements)
Curry Not Curry

0.0309 0.9691
Estimated Feature Scores:
beef boned
Curry
Not Curry
sugar allspice
Curry 0.00620 0.0002296 O.
Not Curry 0.01872 0.0003420 0.
english dijon
Curry 0.0002296 0.0001148
Not Curry 0.0007023 0.0009832
plain flour
Curry 0.004822 0.006085 0.
Not Curry 0.008611 0.014871 0.
cut pieces
curry 0.01297 0.005511

Not Curry 0.01336 0.003786

recipe_dfm, y

recipe dfm$curry, prior = "docfreq")

rolled pint red wine vinegar

0.001378 0.0014925 0.0001148 0.001148 0.011481 0.001607 0.001378
0.003304 0.0006107 0.0004031 0.003847 0.009619 0.007750 0.005154

bay leaves thyme peppercorns crushed
002067 0.01378 0.0004592 0.003789 0.009070
002821 0.01063 0.0048734 0.001826 0.005417
mustard unsalted room temperature lard
0.005166 0.001493 0.0001148 0.0001148 0.0001148
0.002803 0.004953 0.0005741 0.0005924 0.0004153
white water chilled icing chicken
00287 0.007003 0.0001148 0.0003444 0.005855
01042 0.006693 0.0005863 0.0023573 0.007035



Naive Bayes Application

Recall that we are interested in the probability of observing word given class, i.e.
What are these word probabilities for our curry data?

We can examine the probability of each word given each class using the coef () function
onthe nb_train object.

head(coef (nb_output))

Curry Not Curry
beef 0.0013777268 0.0033038975
boned 0.0014925373 0.0006107019
rolled 0.0001148106 0.0004030633
pint 0.0011481056 0.0038474222
red 0.0114810563 0.0096185556
wine 0.0016073479 0.0077498076



Naive Bayes Application



Naive Bayes Application

What are the class-conditional word
probabilities for “Aromatic blackeye bean
curry”?

Choose o B

Aromatic blackeye bean curry

This

Saved from bigoven.com

recipe is spiced with flavo
serving provides 345kcal

gan curry
tof India. Each
carbohydrate (of which.

Saved by BigOven
p(w|curry) P(w|not curry) ) G (-
seeds 0.030 0.008 ="
finely 0.023 0.021
coriander 0.021 0.005
peeled 0.018 0.013
garlic 0.017 0.014
ginger 0.015 0.005
cloves 0.015 0.008
leaves 0.014 0.011
cu@in. 0.014 0.002 Schichttorte
chilli 0.013 0.006
onion 0.010 0.009 % % Kk K X 2ratings
piece 0.010 0.002 Rate this recipe

What are the class-conditional word
probabilities for “Schichttorte”?

P(w|curry) P(w|not curry)

large 0.010 0.010
sugar 0.006 0.019
flour 0.006 0.015
paste 0.006 0.001
plain 0.005 0.009
lemon 0.004 0.008
freerange 0.003 0.013

0.002 0.008

eggs



Naive Bayes Application

Which recipes are predicted to have a high curry probability?

recipe_dfm$curry nb_ probability <- predict(nb_output,
type = "probability")

recipe_dfm$recipe name[order(recipe_dfm$curry nb probability[,1], decreasing = T)[1:10]]

[1] "Bengali butternut squash with chickpeas"
[2] "Chickpea curry with green mango and pomegranate"
[3] "Green coconut fish curry"
[4] "Thai green prawn curry"
[5] "Rogan josh"
[6] "Bengal coconut dal"
[7] "Tom yum soup"
[8] "Thai-style duck red curry"
[9] "Peppery hot cabbage salad"
[10] "Peppery hot cabbage salad"

Which recipes are predicted to have a low curry probability?

recipe_dfm$recipe name[order(recipe_dfm$curry nb probability[,1], decreasing = F)[1:10]]

[1] "Sticky toffee apple pudding with calvados caramel sauce"
[2] "Rich moist all-purpose fruit cake"
[3] "Mini stollen "
[4] "Chocolate fruit cake"
[5] "Pheasant pithiviers"
[6] "Spiced poached pears with chocolate pudding"
[7] "Traditional Christmas pudding with brandy butter"
[8] "Intense chocolate cookies"
[9] "Cookies and cream fudge brownies"
[10] "Bonfire night brioche"



Was #TheStew really #TheCurry?

e The purpose of training a classification model is to make out-of-sample predictions

e Generally, we have a small hand-coded training dataset and then we predict for lots of
other documents

e Here, we are only predicting for one out-of-sample observation

ingredients <- c("cup olive o0il, plus more for serving garlic cloves, chopped large yellow onion, chopped (2

dfm_stew <- tokens(ingredients) %>%
dfm() %>%
dfm _match(features = featnames(recipe_dfm))
predict(nb_output, newdata = dfm_stew, type = "probability")
Curry Not Curry
textl 0.9611718 0.03882815

Yes!



Advantages and Disadvantages of
Naive Bayes

Advantages

* Fast

= Takes seconds to compute, even for very large vocabularies/corpuses
e Easyto apply

= One line of code in quanteda
e Can easily be extended to include...

= ... multiple categories

= .. different text representations (bigrams, tri-grams etc)



Advantages and Disadvantages of
Naive Bayes

Disadvantages

e Independence assumption
= |ndependence means NB is unable to account for interactions between words

o e.g. When the word “eggs” appears with the word “sugar” that should indicate
something different from when “eggs” appears without the word “sugar”

= |[ndependence also means that NB is often overconfident
o Each additional word counts as a new piece of information
= |n some contexts, the independence assumption can decrease predictive accuracy

* Linear classifier

= Other methods (e.g. SVM) allow the classification probabilities to change non-
linearly in the word counts

= e.g. Perhaps seeing the word “eggs” once should have a smaller effect on the

nranhahilihv that tha rarinaic a Fiirnns than canina tha winard “acac” fivia timac



Validation



Naive Bayes Application

Before we train a model, we need to separate our data into a training set and a test set:

## Training and test set

train <- sample(c(TRUE, FALSE), nrow(recipes), replace = TRUE, prob = c(.8, .2))
test <- !train

table(train)

train
FALSE TRUE
1877 7507
table(test)
test
FALSE TRUE
7507 1877

How many curry recipes are there in the training and test sets?

## Training and test set

prop.table(table(recipes$curry[train]))

Curry Not Curry
0.03157053 0.96842947

prop.table(table(recipes$curry[test]))

Curry Not Curry
0.02823655 0.97176345



Naive Bayes Application

We then subset the recipe_dfm objectinto a training dfm and a test dfm:

## Naive Bayes

recipe_dfm_train <- dfm subset(recipe_dfm, train)
recipe dfm test <- dfm subset(recipe dfm, test)

We then train our Naive Bayes model on the training set:

nb_train <- textmodel nb(x recipe_dfm train,
y recipe_dfm train$curry,
prior = "docfreq")

And finally, we predict the category of each recipe in the test set:

recipe_dfm_ test$predicted curry nb <- predict(nb_train,
newdata = recipe dfm test,

type = "class")



Naive Bayes Classification
Perfomance

confusion nb <- table(predicted classification = recipe_dfm te . .
true_classification = recipe_dfm test$cy |mpllcat|0n

library(caret)

Relative to the dictionary

confusionMatrix(confusion nb, positive = "Curry") approaCh we are
Confusion Matrix and Statistics
true classification . .. d0|ng a betterJOb on
predicted_classification Curry Not Curry « L o e
curry 38 101 predicting true positives now
Not Curry 15 1723

(our sensitivity is much higher)

Accuracy : 0.9382

95% CI : (0.9263, 0.9487) e ...predicting too many curries
No Information Rate : 0.9718 .
P-value [Acc > NIR] : 1 that are actually something else
Kappa : 0.3701 (our specificity is a little lower)

Mcnemar's Test P-Value : 2.973e-15

Sensitivity : 0.71698
Specificity : 0.94463

Pos Pred Value : 0.27338

Neg Pred Value : 0.99137
Prevalence : 0.02824

Detection Rate : 0.02025
Detection Prevalence : 0.07405



Training-Set and Test-Set
Performance

The and accuracy can be very different

As a model becomes more flexible...
= ...thetraining set accuracy will almost always increase

= ...the test set accuracy will sometimes decrease

Imagine that we include a very large number of features in our dfm
= All unigrams, all bi-grames, ..., all 5-grams

» Total number of features 300k features

How does the training/test set accuracy change as we increase the number of features
used to train the classifier?
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Overfitting and Test-Set Accuracy

 Question: Why does the test-set accuracy ~ Feature Trai
decrease when we add additional mustard_seeds_tsp
features?

tsp_black_mustard

e Answer: Because we are now overfitting

our data. tsp_black_mustard_seeds

e Overfitting occurs when we find leaves_and_stalks

relationships between words (or n- black_mustard_seeds_tsp

grams) and curries in our training data coriander_leaves_and

that do not generalise to our test data -
cumin_seeds_tsp_black

* Inthis example, there are some n-gram

phrases that appear frequently in the coriander_leaves_and_stalks

curry recipes in our training set but large_garlic_cloves

which never appear in our test-set curry chopped_garlic_cloves_peeled_and
recipes



Test-Set Validation for Feature
Selection

e We can use the test-set performance statistics to select between model specifications
e We will compare the accuracy, sensitivity and specificity for the following models:

= Qur “original” model (unigrams, no stopwords, trimmed)

= A“raw” model (unigrams, nothing removed)

= A “no stopwords” model (unigrams, stopwords removed)

= A “trimmed” model (unigrams, trimmed)

= An “n-gram” model (unigrams, bigrams, trigrams)

= An “n-gram, trimmed” model (unigrams, bigrams, trigrams, words occuring fewer
than 10 times discarded)

e The “best” model is the one which has the highest classification scores



Test-Set Validation for Feature

Selection
Test-set validation

Model Accuracy Sensitivity Specificity N features
Original 0.94 0.78 0.95 902
Raw 0.96 0.65 0.97 4214
No stop words 0.96 0.66 0.97 4126
Trimmed 0.94 0.79 0.95 1339
N-gram 0.98 0.51 1 152215
N-gram, trimmed 0.94 0.83 0.94 6072

e The “n-gram” model has the highest accuracy, but has very low sensitivity

* The “n-gram, trimmed” model outperforms all other models in sensitivity



Cross-Validation

e To calculate the test-set accuracy we randomly allocated observations to the test and

training sets

e |f we repeat this process with a new randomization, we will get slightly different test-set

performance scores

Rerandomization 3:

Test-set validation

Model Accuracy Sensitivity Specificity N features
Original 0.94 0.78 0.95 902

Raw 0.96 0.64 0.97 4214

No stop words 0.96 0.69 0.97 4126
Trimmed 0.94 0.78 0.95 1339
N-gram 0.98 0.51 1 152215
N-gram, trimmed 0.94 0.83 0.94 6072



K-fold Cross-Validation

e Cross-validation is an alternative to a [123

simple train-test split

e This approach involves randomly 11765
dividing the set of observations into H76S
groups, or folds, of approximately equal
size

11765
11765

11765

= Typical choices are or
e For each of the folds we do the following

1. Train the Naive Bayes model on all

2. Generate predictions for the

3. Calculate the accuracy etc of the
predictions for the

47

47

47

47

a7


http://localhost:7198/?print-pdf=
http://localhost:7198/?print-pdf=
http://localhost:7198/?print-pdf=

K-fold Cross-Validation Application

get performance scores <- function(held out){

# Set up train and test sets for this fold
recipe_dfm train <- dfm subset(recipe_dfm, !held out)
recipe_dfm test <- dfm subset(recipe_dfm, held out)

# Train model on everything except held-out fold
nb_train <- textmodel nb(x = recipe dfm train,
y = recipe_dfm train$curry,
prior = "docfreq")

# Predict for held-out fold

recipe_dfm test$predicted curry <- predict(nb_train,
newdata = recipe dfm test,
type = "class")

# Calculate accuracy, specificity, sensitivity

confusion nb <- table(predicted classification = recipe dfm test$predicted_curry,
true classification = recipe dfm testS$curry)

confusion_nb_statistics <- confusionMatrix(confusion_nb, positive = "Curry")

accuracy <- confusion nb statistics$overall[1l]

sensitivity <- confusion nb statistics$byClass[1]

specificity <- confusion_nb statistics$byClass[2]

returnidata. framelaccnracv. sencitivitv. anecificitw))



K-fold Cross-Validation Application

K <- 5
folds <- sample(l:K, nrow(recipe_dfm), replace = T)
get_performance_scores(folds == 1)

accuracy sensitivity specificity
Accuracy 0.9418182 0.754386 0.9475375

all folds <- lapply(1l:5, function(k) get performance scores(folds == k))
all folds

(111
accuracy sensitivity specificity
Accuracy 0.9418182 0.754386 0.9475375

(1211
accuracy sensitivity specificity
Accuracy 0.9389356 0.6923077 0.9463358

[[311
accuracy sensitivity specificity
Accuracy 0.935911 0.7666667 0.9414661

[[411
accuracy sensitivity specificity
Accuracy 0.9420829 0.7704918 0.9478309

[[511
accuracy sensitivity specificity
Accuracy 0.9380252 0.7166667 0.9452278

colMeans (bind rows(all folds))

accuracy sensitivity specificity
0.9393546 0.7401038 0.9456796



Cross-Validation for Model Selection



Extensions

Naive Bayes is only one supervised learning text-classification method

e Regularized Logistic Regression

= Directly models the probability that each document s in class using logistic
regression

= Regularization required to prevent overfitting data
= textmodel_1lrinquanteda
e Support Vector Machines

= SVMs draw a hyperplane through the multidimensional word space that best
separates documents into different classes

» Can accomodate non-linear boundaries between classes
= textmodel_svm() inquanteda
e “Tree-based” Classification Methods

= Tree-based methods separate classes by segmenting the predictors (word counts)
into a number of distinct regions



Use Cases of Supervised Learning



Conclusion



Summing Up

1. Using a vector-based representation allows us to calculate the similarity between
documents

2. Supervised learning for text data allows us to learn the association between words and
particular outcome categories

3. The Naive Bayes model is a simple model that is fast to implement and which, despite
some strong assumptions, tends to provide good classification results



