
Lecture 10: Similarity
Metrics and Supervised

Learning for Text
Jack Blumenau

ME314



Today’s lecture
Similarity
Difference
Supervised Learning for Text
Naive Bayes Classification
Validation
Conclusion

http://localhost:7198/?print-pdf=#/similarity
http://localhost:7198/?print-pdf=#/difference
http://localhost:7198/?print-pdf=#/supervised-learning-for-text
http://localhost:7198/?print-pdf=#/naive-bayes-classification
http://localhost:7198/?print-pdf=#/validation
http://localhost:7198/?print-pdf=#/conclusion




Motivating Example
How similar are these two modules?
[1] "Causal Inference (PUBL0050)"

[1] "This course provides an introduction to statistical methods used for causal inference in the social 
sciences. We will be concerned with understanding how and when it is possible to make causal claims in empirical 
research. In particular, we will focus on understanding which assumptions are necessary for giving research a 
causal interpretation, and on learning a range of approaches that can be used..."

[1] "Quantitative Text Analysis for Social Science (PUBL0099)"

[1] "Growth of text data in recent years, and the development of a set of sophisticated tools for analysing that 
data, offers important opportunities for social scientists to study questions that were previously amenable to 
only qualitative analyses.\n\nThis module will allow students to take advantage of these opportunities by 
providing them with an understanding of, and ability to apply, tools of quantitative text analysis..."

We will use data from the  to evaluate the similarity
between these courses.

universe of modules taught at UCL

https://www.ucl.ac.uk/module-catalogue/


Module Catalogue



Similarity



Vector Space Model
We previously represented our text data as a document-feature matrix

Rows: Documents

Columns: Features

Each document is therefore described by a vector of word counts

This representation allows us to measure several important properties of our
documents

We denote a vector representation of a document using a bold letter:

where  is the number of times feature  appears in the document,  is the number of times feature 2 appears in the
document, and so on.

Vectors notation

a = { , , . . . , }a1 a2 aJ

a1 1 a2



Similarity
Idea: Each document can be represented by a vector of (weighted) feature counts, and
that these vectors can be evaluated using similarity metrics

A document’s vector is simply (for now) it’s row in the document-feature matrix

Key question: how do we measure distance or similarity between the vector
representation of two (or more) different documents?



Similarity
There are many different metrics we might use to capture similarity/difference between
texts:

1. Edit distances

2. Inner product

3. Euclidean distance

4. Cosine similarity

The choice of metric comes down to an assumption about which kinds of differences are
most important to consider when comparing documents.



Edit Distance
Edit distances measure the similarity/difference between text strings

A commonly used edit distance is the Levenshtein distance

Measures the minimal number of operations (replacing, inserting, or deleting) required
to transform one string into another

Example: the Levenshtein distance between “kitten” and “sitting” is 3

kitten  sitten (substitute “k” for “s”)

sitten  sittin (substitute “e” for “i”)

sittin  sitting (insert “g” at the end)

In r:

Generally not used in large scale applications because computationally burdensome to
implement on long texts

x <- c("kitten", "sitting")1
2

adist(x)3

     [,1] [,2]
[1,]    0    3
[2,]    3    0



Inner Product

The inner product, or “dot” product, between two vectors is the sum of the element-wise multiplication of the vectors:

NB: dot product is a scalar

NB: When the vectors are dichotomized document-feature matrices (only 0s and 1s), then the inner product gives the number
of features that the two documents share in common.

Inner product

a ⋅ b =
=

baT

+ +. . . +a1b1 a2b2 aJbJ

Example

Imagine three documents with a six-word vocabulary:

causal estimate identification text document feature

Document a 2 3 3 0 0 1

Document b 2 0 0 3 2 3

Document c 1 2 1 1 0 1

Example

Imagine three documents with a six-word vocabulary:

causal estimate identification text document feature

Document a 2 3 3 0 0 1

Document b 4 0 0 6 4 6

Document c 1 2 1 1 0 1



Euclidean Distance

The Euclidean Distance between two document vectors,  and , is given by:

Where  is the total number of features in the dfm.

The Euclidean distance is based on the Pythagorean theorem

Similar problem to the inner product: sensitive to document length

Euclidean Distance

a b

d(a, b) =

=

( −∑
j=1

J
aj bj)2

‾ ‾‾‾‾‾‾‾‾‾‾‾

⎷


||a − b||

J



Euclidean Distance Illustration



Euclidean Distance Illustration



Cosine Similarity
Measures of document similarity should not be sensitive to the number of words in
each of the documents

We don’t want long documents to be “more similar” than shorter documents just as
a function of length

A natural way to adapt the inner product measure is to normalise by document length,
which we do by calculating the magnitude of the document vectors

Cosine similarity is a measure of similarity that is based on the normalized inner
product of two vectors

It can be interpreted as…

…a normalized version of the inner product or Euclidean distance

…the cosine of the angle between the two vectors



Cosine Similarity

The cosine similarity ( ) between two vectors  and  is defined as:

where  is the angle between the two vectors and  and  are the magnitudes of the vectors  and ,
respectively.

The magnitude of a vector (also known as the “length”) is the square-root of the inner product of the vector with itself:

Cosine similarity

cos(θ) a b

cos(θ) = a ⋅ b
||a|| ||b||

θ ||a|| ||b|| a b

Vector Magnitude (or “length”)

||a|| =
=

a ⋅ a‾ ‾‾‾√
+ +. . . +a2

1 a2
2 a2

J
‾ ‾‾‾‾‾‾‾‾‾‾‾‾‾‾√



Interpretation
The value of cosine similarity ranges from -1 to 1

A value of 1 indicates that the vectors are identical

A value of 0 indicates that the vectors are orthogonal (i.e., not similar at all)

A value of -1 indicating that the vectors are diametrically opposed.

Thus, the closer the value is to 1, the more similar the vectors are.

Calculated for vectors of word counts (or any positively-valued vectors), the cosine
similarity ranges from 0 to 1.



Cosine Similarity Illustration



Cosine Similarity Illustration



Cosine Similarity Illustration



Module Catalogue Data
str(modules)1

tibble [6,248 × 10] (S3: tbl_df/tbl/data.frame)1
 $ teaching_department   : chr [1:6248] "Greek and Latin" "Greek and Latin" "Bartlett School of Sustainable Construction" "Bartlett School of Architecture" ...2
 $ level                 : num [1:6248] 5 4 7 5 7 7 4 7 7 7 ...3
 $ intended_teaching_term: chr [1:6248] "Term 1|Term 2" "Term 1" "Term 1" "Term 2" ...4
 $ credit_value          : chr [1:6248] "15" "15" "15" "30" ...5
 $ mode                  : chr [1:6248] "" "" "" "" ...6
 $ subject               : chr [1:6248] "Ancient Greek|Ancient Languages and Cultures|Classics" "Ancient Greek|Ancient Languages and Cultures|Classics" "" "" ...7
 $ keywords              : chr [1:6248] "ANCIENT GREEK|LANGUAGE" "ANCIENT GREEK|LANGUAGE" "Infrastructure finance|Financial modelling|Investment" "DESIGN PROJECT ARCHITECTURE" ...8
 $ title                 : chr [1:6248] "Advanced Greek A (GREK0009)" "Greek for Beginners A (GREK0002)" "Infrastructure Finance (BCPM0016)" "Design Project (BARC0135)" ...9
 $ module_description    : chr [1:6248] "Teaching Delivery: This module is taught in 20 bi-weekly lectures and 10 weekly PGTA-led seminars.\n\nContent: "| __truncated__ "Teaching Delivery: This module is taught in 20 bi-weekly lectures and 30 tri-weekly PGTA-led seminars.\n\nConte"| __truncated__ "This module offers a broad overview of infrastructure project development, finance, and investment. By explorin"| __truncated__ "Students take forward the unit themes, together with personal ideas and concepts from BARC0097, and develop the"| __truncated__ ...10
 $ code                  : chr [1:6248] "GREK0009" "GREK0002" "BCPM0016" "BARC0135" ...11

modules$module_description[modules$code == "PUBL0099"]1

[1] "Growth of text data in recent years, and the development of a set of sophisticated tools for analysing that data, offers important opportunities for social scientists to study questions that were previously amenable to only qualitative analyses.\n\nThis module will allow students to take advantage of these opportunities by providing them with an understanding of, and ability to apply, tools of quantitative text analysis to answer important questions in the fields of social science and public policy.\n\nThe module is centred around three core components of a typical quantitative text analysis project.\nFirst, students will learn to collect text data at scale. Students will study how to scrape text data from the web, and how to use methods such as Optimal Character Recognition to extract digitized text data from printed physical documents.\nSecond, students will learn the various ways in which written texts can be converted into data to use in quantitative analyses. This includes extracting features from the texts, such as coded categories, word counts, word types, dictionary counts, parts of speech, and so on.\nThird, the module covers a range of methods for systematically extracting quantitative information from digitized texts, including traditional approaches such as content analysis and dictionary-based methods; supervised learning approaches for text classification methods and text scaling; and also recent advances in semi-supervised and unsupervised learning for texts, such as topic models and word-embedding models.\n\nThe module has a strongly applied focus, with students learning to collect, manipulate, and analyse data themselves. The module covers a wide range of examples of how these methods are used in the social sciences, in business, and in government.\n\n \n"1

modules$module_description[modules$code == "PUBL0050"]1

[1] "This course provides an introduction to statistical methods used for causal inference in the social sciences. We will be concerned with understanding how and when it is possible to make causal claims in empirical research. In particular, we will focus on understanding which assumptions are necessary for giving research a causal interpretation, and on learning a range of approaches that can be used to establish causality empirically. The course will be practical – in that you can expect to learn how to apply a suite of methods in your own research – and theoretical – in that you can expect to think hard about what it means to make claims of causality in the social sciences.\nWe will address a variety of topics that are popular in the current political science literature. Topics may include experiments (laboratory, field, and natural); matching; regression; weighting; fixed-effects; difference-in-differences; regression discontinuity designs; instrumental variables; and synthetic control. Examples are typically drawn from many areas of political science, including political behaviour, institutions, international relations, and public administration.\nThe goal of the module is to teach students to understand and confidently apply various statistical methods and research designs that are essential for modern day data analysis. Students will also learn data analytic skills using the statistical software package R.\nThis is an advanced module intended for students who have already had some training in quantitative methods for data analysis. One previous course in quantitative methods, statistics, or econometrics is required for all students participating on this course. Students should therefore have a working knowledge of the methods covered in typical introductory quantitative methods courses (i.e. at least to the level of PUBL0055 or equivalent). At a minimum, this should include experience with hypothesis testing and multiple linear regression.\n"1

Question: Which other modules at UCL are most similar to these two modules?



Cosine Similarity – Application
PUBL0050

# Create a corpus object from module catalogue data1
modules_corpus <- corpus(modules, 2
                         text_field = "module_description", 3
                         docid_field = "code")4

5
# Convert modules data into a dfm6
modules_dfm <- modules_corpus %>% 7
                tokens() %>% 8
                dfm()9

10
# Calculate the cosine similarity between PUBL0050 and all other modules11
cosine_sim_50 <- textstat_simil(x = modules_dfm, 12
                             y = modules_dfm[modules$code == "PUBL0050",],13
                             method = "cosine")14

15
head(cosine_sim_50)16

          PUBL0050
GREK0009 0.6801510
GREK0002 0.6209725
BCPM0016 0.5782462
BARC0135 0.5060876
BCPM0036 0.4374233
BIDI0002 0.6731816

PUBL0099
# Calculate the cosine similarity between PUBL0099 and all other modules1
cosine_sim_99 <- textstat_simil(x = modules_dfm, 2
                             y = modules_dfm[modules$code == "PUBL0099",],3
                             method = "cosine")4

5



Cosine Similarity – Application



Cosine Similarity – Application
Which modules are most similar to PUBL0050?

# Create a new variable in original data frame1
modules$cosine_sim_50 <- as.numeric(cosine_sim_50)2

3
# Arrange the data.frame in order of similarity and extract titles4
modules %>%5
  arrange(-cosine_sim_50) %>%6
  select(title)7

# A tibble: 6,248 × 11
   title                                                    2
   <chr>                                                    3
 1 Causal Inference (PUBL0050)                              4
 2 Research Methods and Skills (ANTH0104)                   5
 3 Regression Modelling (IEHC0050)                          6
 4 Selected Topics in Statistics (STAT0017)                 7
 5 Dissertation - MSc CPIPP (PHAY0053)                      8
 6 Advanced Photonics Devices (ELEC0109)                    9
 7 User-Centred Data Visualization (PSYC0102)               10
 8 Introduction to Assessment (MDSC0002)                    11
 9 Quantitative Methods and Mathematical Thinking (BASC0003)12
10 Core Principles of Mental Health Research (PSBS0002)     13
# ℹ 6,238 more rows14

Which modules are most similar to PUBL0099?
# Create a new variable in original data frame1
modules$cosine_sim_99 <- as.numeric(cosine_sim_99)2

3
# Arrange the data.frame in order of similarity and extract titles4
modules %>%5
  arrange(-cosine_sim_99) %>%6
  select(title)7

# A tibble: 6,248 × 11
   title                                                                  2
   <chr>                                                                  3
 1 Quantitative Text Analysis for Social Science (PUBL0099)               4
 2 Archaeological Glass and Glazes (ARCL0099)                             5
 3 User-Centred Data Visualization (PSYC0102)                             6
 4 Understanding and Analysing Data (SESS0006)                            7
 5 Understanding and Analysing Data (SEES0107)                            8
 6 Data Analysis (POLS0010)                                               9
 7 Laboratory and Instrumental Skills in Archaeological Science (ARCL0170)10
 8 The Anthropology of Violent Aftermaths (ANTH0136)                      11
 9 Fashion Cultures (LITC0044)                                            12
10 Anthropology of Politics, Violence and Crime (ANTH0175)                13



Misleading Word Counts
Why do we recover so many strange matches for our PUBL0050 and PUBL0099
documents?

Let’s compare the most common features of the following four modules:

PUBL0099 – Quantitative Text Analysis for Social Science
topfeatures(modules_dfm[modules$code=="PUBL0099",], 8)1    ,  and   of   to    .  the   in text 1

  21   12   12   11   10   10    8    8 2

PUBL0050 – Causal Inference
topfeatures(modules_dfm[modules$code=="PUBL0050",], 8)1   .  in   ,  to and the  of   ; 1

 14  11  11  10   9   9   8   8 2

ELEC0109 – Advanced Photonics Devices
topfeatures(modules_dfm[modules$code=="ELEC0109",], 8)1 and   ,  of the   ;   .  to  in 1

104 100  77  77  62  55  51  48 2

ARCL0099 – Archaeological Glass and Glazes
topfeatures(modules_dfm[modules$code=="ARCL0099",], 8)1    ,  the   of  and   to    .   in this 1

  27   24   23   20   17   16    9    6 2

Feature selection matters! Similarities here are being driven by substantively unimportant
words.



Weighted Vectors
The bag-of-words representation characterises documents according to the raw counts
of each word

The critical problem with using raw term frequency is that all terms are considered
equally important when it comes to assessing similarity

One way of avoiding this problem is to weight the vectors of word counts in ways that
make our text representations more informative

There are several strategies for weighting the word vectors that represent our
documents, the most common of which is tf-idf weighting



Tf-idf intuition
Tf-idf stands for “term-frequency-inverse-document-frequency”

Tf-idf weighting can improve our representations of documents because it assigns
higher weights to…

… words that are common in a given document (“term-frequency”) and

… words that are rare in the corpus as a whole (“inverse-document-frequency”)

Down-weighed words include…

…stop words (e.g. and, if, the, but, etc) and also…

… terms that are domain-specific but used frequently across documents
(e.g. module, class, assessment, exam)

Up-weighted terms are therefore those words that are more distinctive and thus are
more useful for characterising a given text



TF-idf

The tf-idf weighting scheme assigns to feature  a weight in document  according to:

 is the number of times feature  appears in document 

 is the number of documents in the corpus that contain feature 

 is the total number of documents

NB: tf-idf is specific to a feature in a document

Term-frequency-inverse-document-frequency (tf-idf)

j i

tf-idfi,j =

=

× idWi,j fj

× log( )Wi,j
N
dfj

Wi,j j i
dfj j
N

Implications

 will be…

1. …highest when feature  occurs many times in a small number of documents

2. …lower when feature  occurs few times in a document, or occurs in many documents

3. …lowest when feature  occurs in virtually all documents

tf-idfi,j

j
j
j



Tf-idf – Application
# Convert modules data into a dfm *with tf-idf wieghts*1
modules_dfm_tfidf <- modules_corpus %>% 2
                        tokens() %>% 3
                        dfm() %>% 4
                        dfm_tfidf()5

6
modules_dfm_tfidf7

Document-feature matrix of: 6,248 documents, 35,483 features (99.68% sparse) and 8 docvars.
          features
docs        teaching delivery       :      this    module        is   taught
  GREK0009 0.8071821 1.083091 2.74080 0.3076292 0.5888072 0.3026049 1.791841
  GREK0002 1.6143641 1.083091 1.64448 0.0769073 0.3680045 0.1513024 1.791841
  BCPM0016 0         1.083091 0.54816 0.2307219 0.2208027 0.1513024 0       
  BARC0135 0         0        0.82224 0.0769073 0         0.3026049 0       
  BCPM0036 0         0        1.09632 0.0769073 0.0736009 0         0       
  BIDI0002 0         0        0.27408 0.2307219 0.2944036 0.1513024 0       
          features
docs               in       20 bi-weekly
  GREK0009 0.43350179 1.851258  2.453318
  GREK0002 0.07881851 1.851258  2.453318
  BCPM0016 0.03940925 0         0       
  BARC0135 0          0         0       
  BCPM0036 0.03940925 0         0       
  BIDI0002 0.15763701 0         0       
[ reached max_ndoc ... 6,242 more documents, reached max_nfeat ... 35,473 more features ]



Tf-idf – Application
What are the features with the highest tf-idf scores for our four modules?

PUBL0099 – Quantitative Text Analysis for Social Science
topfeatures(modules_dfm_tfidf[modules$code=="PUBL0099",], 8)1         text    digitized quantitative       counts         data   extracting 1

   11.992607     7.591482     5.431962     5.363595     5.185216     4.831060 2
     collect        texts 3
    4.049778     4.030291 4

PUBL0050 – Causal Inference
topfeatures(modules_dfm_tfidf[modules$code=="PUBL0050",], 8)1       causal    causality   regression            ;      methods       expect 1

    7.093132     5.183242     5.065593     4.634490     4.512744     4.344983 2
quantitative       claims 3
    4.073971     3.979122 4

ELEC0109 – Advanced Photonics Devices
topfeatures(modules_dfm_tfidf[modules$code=="ELEC0109",], 8)1             ;       optical         laser        lasers semiconductor 1

     35.91729      35.64063      31.79536      28.92651      26.55579 2
     photonic        liquid       devices 3
     25.16167      24.78914      24.23796 4

ARCL0099 – Archaeological Glass and Glazes
topfeatures(modules_dfm_tfidf[modules$code=="ARCL0099",], 8)1         glass        glazes      pigments         beads     materials 1

    14.753215      7.591482      6.989422      6.637240      5.632121 2
chronological     siliceous    ornamental 3
     4.285057      3.795741      3.795741 4



Tf-idf cosine similarity
# Calculate the cosine similarity between PUBL0050 and all other modules1
cosine_sim_tfidf_50 <- textstat_simil(x = modules_dfm_tfidf, 2
                             y = modules_dfm_tfidf[modules$code == "PUBL0050",],3
                             method = "cosine")4

5
# Calculate the cosine similarity between PUBL0099 and all other modules6
cosine_sim_tfidf_99 <- textstat_simil(x = modules_dfm_tfidf, 7
                             y = modules_dfm_tfidf[modules$code == "PUBL0099",],8
                             method = "cosine")9



Tf-idf – Application



Cosine Similarity – Application
Which modules are most similar to PUBL0050?

# Create a new variable in original data frame1
modules$cosine_sim_tfidf_50 <- as.numeric(cosine_sim_tfidf_50)2

3
# Arrange the data.frame in order of similarity and extract titles4
modules %>%5
  arrange(-cosine_sim_tfidf_50) %>%6
  select(title)7

# A tibble: 6,248 × 11
   title                                                     2
   <chr>                                                     3
 1 Causal Inference (PUBL0050)                               4
 2 Causal Analysis in Data Science (POLS0012)                5
 3 Advanced Quantitative Methods (PHDE0084)                  6
 4 Quantitative Data Analysis (POLS0083)                     7
 5 Advanced Statistics for Records Research (CHME0015)       8
 6 Understanding and Analysing Data (SESS0006)               9
 7 Understanding and Analysing Data (SEES0107)               10
 8 Quantitative and Qualitative Research Methods 1 (IEHC0020)11
 9 Statistics for Health Economics (STAT0039)                12
10 Introduction to Statistics for Social Research (ANTH0107) 13
# ℹ 6,238 more rows14

Which modules are most similar to PUBL0099?
# Create a new variable in original data frame1
modules$cosine_sim_tfidf_99 <- as.numeric(cosine_sim_tfidf_99)2

3
# Arrange the data.frame in order of similarity and extract titles4
modules %>%5
  arrange(-cosine_sim_tfidf_99) %>%6
  select(title)7

# A tibble: 6,248 × 11
   title                                                                        2
   <chr>                                                                        3
 1 Quantitative Text Analysis for Social Science (PUBL0099)                     4
 2 Data Science for Crime Scientists (SECU0050)                                 5
 3 Understanding and Analysing Data (SESS0006)                                  6
 4 Understanding and Analysing Data (SEES0107)                                  7
 5 Data Analysis (POLS0010)                                                     8
 6 Quantitative Data Analysis (POLS0083)                                        9
 7 Literary Linguistics A (ENGL0042)                                            10
 8 Analysing Research Data (IOEF0026)                                           11
 9 Middle Bronze Age to the Iron Age in the Near East: City-States and Empires …12
10 Research Methods - Quantitative (CENG0045)                                   13



Tf-idf Does Not Solve All Problems
Consider these two sentences:

“Quantitative text analysis is very successful.”

“Natural language processing is tremendously effective.”

Represented as a DFM:

quantitative text analysis very successful natural language processing

D1 1 1 1 1 1 0 0 0

D2 0 0 0 0 0 1 1 1

The cosine similarity between these vectors is:

cos(θ) = = 0a ⋅ b
||a|| ||b||

No dfm weighting scheme can address the core problem: the sentences are formed of non-
overlapping sets of words.

We will see one powerful alternative to this problem when we consider word-embedding



Cosine Similarity Example

Does learning about the public’s attitudes on a political issue change how much attention politicians pay to that issue in their
public statements?

Set up:

Politicians in Germany have historically received public opinion research on citizens’ attitudes

Release of the polling data is exogenously determined, providing causal identification (via a regression-discontinuity
design)

Strategy: Measure the linguistic (cosine) similarity between reports summarising public opinion and political speeches

Does public opinion affect political speech? (Hager and Hilbig, 2020)



Cosine Similarity Example

Implication: Public statements of politicians move closer to summaries of public opinion
a#er publication of polling research.



Difference



Detecting discriminating words
Sometimes we want to characterise differences between documents, not just measuring
the similarity between them.

We want to find a set of words that conveys the distinct content between documents.

We might be interested in, for example, how language use differs between…

1. …politicians on the le# and the right (Diermeier et. al., 2012)

2. …male and female voters (Cunha, et. al., 2014)

3. …blog posts written by people in different geographic regions (Eisenstein et. al., 2010)

Identifying discriminating words between groups is useful because these words tend to
help us characterise the type of language/arguments/linguistic frames that a group
employs.

https://www.cambridge.org/core/journals/british-journal-of-political-science/article/abs/language-and-ideology-in-congress/1063F5509BC2ABC3F9A0E164E58157EE
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0087041
https://www.cs.cmu.edu/~nasmith/papers/eisenstein+oconnor+smith+xing.emnlp10.pdf


Word clouds
The high-dimensional nature of natural language means that o#en the best methods for
detecting discriminating words are those that allow us to visualise differences between
groups.

A very common method for visualising corpus- or group-wide word use is via a word
cloud.

A word cloud is a visual representation of the frequency and importance of words in a
given text.

The size of each word in the cloud reflects its frequency or importance within the text.

The layout of the words in the cloud is usually random, but it is possible to arrange
terms such that their placement reflects some variation of interest

We will use word clouds to explore the differences between Economics and Political
Science modules.



Word clouds – Application
# Load library for plotting1
library(quanteda.textplots)2

3
# Remove stopwords4
modules_dfm <- modules_dfm %>% dfm_remove(stopwords("en"))5

6
# Subset the modules_dfm object to only modules in PS or Econ7
ps_dfm <- modules_dfm[docvars(modules_dfm)$teaching_department == "Political Science",]8
econ_dfm <- modules_dfm[docvars(modules_dfm)$teaching_department == "Economics",]9

10
# Create word clouds with top 300 features in each dfm11
textplot_wordcloud(ps_dfm, max_words = 300)12
textplot_wordcloud(econ_dfm, max_words = 300)13



Word clouds – Application

Although there are some differences, many words are common across both sets of
document.

Can we do better using tf-idf weighting?



Word clouds – Application
library(quanteda.textplots)1

2
# Create a corpus object from module catalogue data3
modules_corpus <- corpus(modules, 4
                         text_field = "module_description", 5
                         docid_field = "code")6

7
# Convert modules data into a difm8
ps_econ_dfm_tf_idf <- modules_corpus %>% 9
                tokens(remove_punct = T) %>% 10
                dfm() %>%11
                dfm_tfidf()12



Word clouds – Application

Even with tf-idf weighting, it is hard to identify many of the distinguishing words.



The Problem with Word Clouds
Humans can only visualise a limited number of dimensions:

Width (i.e. x-axis position)

Height (i.e. y-axis position)

Depth (i.e. z-axis position, hard for most
people)

Colour

Shape

Size

Opacity

Core problem of word clouds: they do not
take full advantage of the dimensional
space available to them



Discriminating Words
An alternative approach is to directly visualise the difference in word use across groups.

We need a metric to calculate such differences at the individual feature level. One such
approach is to use the difference in tf-idf scores across groups .(Munroe, et. al, 2008)

https://www.cambridge.org/core/journals/political-analysis/article/fightin-words-lexical-feature-selection-and-evaluation-for-identifying-the-content-of-political-conflict/81B3703230D21620B81EB6E2266C7A66


Discriminating words – Political
Science v Economics

Political
Science

Economics

political economics

international year

politics students

rights models

public prerequisites

policy aims

human suitable

global bsc

law knowledge

questions final



Discriminating words – Political
Science v History

Political Science History

policy history

international please

politics period

rights term

human historical

public sources

questions description

law full

research war

empirical century

theoretical cultural



Discriminating words – Political
Science v Geography

Political
Science

Geography

political urban

policy geography

international data

public spatial

politics modelling

rights skills

law change

questions climate

institutions environmental

democracy thinking



Example: Fightin’ words



Example: Fightin’ words



Break



Supervised Learning for
Text



Motivation - Is this a curry?



Motivation
What is a curry?
Oxford English Dictionary:

“A preparation of meat, fish, fruit, or vegetables, cooked with a quantity of bruised
spices and turmeric, and used as a relish or flavouring, esp. for dishes composed of or
served with rice. Hence, a curry = a dish or stew (of rice, meat, etc.) flavoured with
this preparation (or with curry-powder).”



Motivation
If a curry can be defined by the spices a dish contains, then we ought to be able to
predict whether a recipe is a curry from ingredients listed in recipes

We will evaluate the probability that #TheStew is a curry by training a curry classifier on
a set of recipes

We will use data on 9384 recipes from the BBC recipe archive

This data includes information on

Recipe names

Recipe ingredients

Recipe instructions



Motivation
Our data includes information on each recipe:

recipes$recipe_name[1]1

[1] "Mustard and thyme crusted rib-eye of beef "

recipes$ingredients[1]1

[1] "2.25kg/5lb rib-eye of beef, boned and rolled 450ml/Â¾ pint red wine 150ml/Â¼ pint red wine vinegar 1 tbsp 
sugar 1 tsp ground allspice 2 bay leaves 1 tbsp chopped fresh thyme 2 tbsp black peppercorns, crushed 2 tbsp 
English or Dijon mustard"

recipes$directions[1]1

[1] "Place the rib-eye of beef into a large non-metallic dish. In a jug, mix together the red wine, vinegar, 
sugar, allspice, bay leaf and half of the thyme until well combined. Pour the mixture over the beef, turning to 
coat the joint evenly in the liquid. Cover the dish loosely with cling film and set aside to marinate in the 
fridge for at least four hours, turning occasionally. (The beef can be marinated for up to two days.) When the 
beef is ready to cook, preheat the oven to 190C/375F/Gas 5. Lift the beef from the marinade, allowing any excess 
liquid to drip off, and place on a plate, loosely covered, until the meat has returned to room temperature. 
Sprinkle the crushed peppercorns and the remaining thyme onto a plate. Spread the mustard evenly all over the 
surface of the beef, then roll the beef in the peppercorn and thyme mixture to coat. Place the crusted beef into 
a roasting tin and roast in the oven for 1 hour 20 minutes (for medium-rare) or 1 hour 50 minutes (for well-
done). Meanwhile, for the horseradish cream, mix the crÃ¨me frÃ¢iche, creamed horseradish, mustard and chives 
together in a bowl until well combined. Season, to taste, with salt and freshly ground black pepper, then spoon 
into a serving dish and chill until needed. When the beef is cooked to your liking, transfer to a warmed platter 
and cover with aluminium foil, then set aside to rest in a warm place for 25-30 minutes. To serve, carve the 
rib-eye of beef into slices and arrange on warmed plates. Spoon the roasted root vegetables alongside. Serve 
with the horseradish cream."

We also have “hand-coded” information on whether each dish is really a curry:
table(recipes$curry)1

    Curry Not Curry 



Defining a curry
head(recipes$recipe_name[recipes$curry == "Curry"])1

[1] "Venison massaman curry"             "Almond and cauliflower korma curry"
[3] "Aromatic beef curry"                "Aromatic blackeye bean curry"      
[5] "Aubergine curry"                    "Bangladeshi venison curry"         



A curry dictionary
Given that we have some idea of the concept we would like to measure, perhaps we can
just use a dictionary:

## Convert to corpus1
recipe_corpus <- corpus(recipes, text_field = "ingredients")2

3
# Tokenize4
recipe_tokens <- tokens(recipe_corpus, remove_punct = TRUE, 5
                        remove_numbers = TRUE, remove_symbols = TRUE) %>%6
                 tokens_remove(c(stopwords("en"),7
                    "ml","fl","x","mlâ","mlfl","g","kglb",8
                    "tsp","tbsp","goz","oz", "glb", "gâ", "â"))9

10
# Convert to DFM11
recipe_dfm <- recipe_tokens %>%12
    dfm() %>%13
    dfm_trim(max_docfreq = .3, 14
             min_docfreq = .002, 15
             docfreq_type = "prop") 16

17
topfeatures(recipe_dfm, 20)18

   finely     sugar     flour    sliced    garlic    peeled       cut freerange 1
     3707      3118      2486      2456      2362      2333      2299      2196 2
   leaves     juice     white       red     large     extra    caster     seeds 3
     1859      1757      1730      1673      1658      1626      1615      1541 4
    small vegetable     onion     plain 5
     1498      1493      1485      1450 6



A curry dictionary
curry_dict <- dictionary(list(curry = c("spices", 1
                                        "turmeric")))2

3
curry_dfm <- dfm_lookup(recipe_dfm, dictionary = curry_dict)4

5
curry_dfm$recipe_name[order(curry_dfm[,1], decreasing = T)[1:10]]6

 [1] "Indonesian stir-fried rice (Nasi goreng)"                       
 [2] "Pineapple, prawn and scallop curry"                             
 [3] "Almond and cauliflower korma curry"                             
 [4] "Aloo panchporan (Stir-fried potatoes tempered with five spices)"
 [5] "Aromatic beef curry"                                            
 [6] "Asian-spiced rice with coriander-crusted lamb and rosemary oil" 
 [7] "Beef chilli flash-fry with yoghurt rice"                        
 [8] "Beef rendang with mango chutney and sticky rice"                
 [9] "Beef curry with jasmine rice"                                   
[10] "Beef Madras"                                                    



Classification Perfomance
Let’s classify a recipe as a “curry” if it includes any of
our dictionary words

recipes$curry_dictionary <- ifelse(as.numeric(curry_dfm[,1]) > 0, "Curry", "Not Curry")1
2

confusion_dictionary <- table(predicted_classification = recipes$curry_dictionary,3
                                   true_classification = recipes$curry)4

library(caret)1
2

confusionMatrix(confusion_dictionary, positive = "Curry")3

Confusion Matrix and Statistics1
2

                        true_classification3
predicted_classification Curry Not Curry4
               Curry        95       1795
               Not Curry   195      89156
                                        7
               Accuracy : 0.9601        8
                 95% CI : (0.956, 0.964)9
    No Information Rate : 0.9691        10
    P-Value [Acc > NIR] : 1.000         11
                                        12
                  Kappa : 0.3164        13
                                        14
 Mcnemar's Test P-Value : 0.438         15
                                        16
            Sensitivity : 0.32759       17
            Specificity : 0.98032       18
         Pos Pred Value : 0.34672       19
         Neg Pred Value : 0.97859       20
             Prevalence : 0.03090       21

Accuracy = #True Positives + #True Negatives
#Observations

Sensitivity = #True Positives
#True Positives + #False Negatives

Specificity = #True Negatives
#True Negative + #False Positives

Implication:

We can pick up some signal with
the dictionary, but we are not
doing a great job of classifying
curries

Our sensitivity is a very low

We need methods that are
better at working out the



Supervised Learning vs Dictionaries
Supervised learning methods classify documents into pre-defined categories on the basis
of the words they contain.

Supervised learning can be conceptualized as a generalization of dictionary methods

Dictionaries:

Words associated with each category are pre-specified by the researcher

Words typically have a weight of either zero or one

Documents are scored on the basis of words they contain

Supervised learning:

Words are associated with categories on the basis of pre-labelled training data

Words have are weighted according to their relative prevalence in each each
category

Documents are scored on the basis of words they contain

The key difference is that in supervised learning the features associated with each
category (and their relative weight) are learned from the data

A major advantage of supervised learning methods is that the weights we estimate are



Components of Supervised Learning
Labelled dataset

Labelled (normally hand-coded) data which categorizes texts into different
categories

Training set: used to train the classifier

Test set: used to validate the classifier

Classification method

Statistical method to:

learn the relationship between coded texts and words

predict unlabeled documents from the words they contain

Examples: Naive Bayes, Logistic Regression, SVM, tree-based methods, many
others…

Validation method

Predictive metrics such as confusion matrix, accuracy, sensitivity, specificity, etc

Normally we use a specific type of validation known as cross-validation



Creating a labelled datset
How do we obtain a labelled set?

External sources of annotation, e.g.

Party labels for election manifestos

Disputed authorship of Federalist papers estimated based on known authors of
other documents

Expert annotation, e.g.

In many projects, undergraduate students (“expertise” comes from training)

Existing expert annotations, e.g. Comparative Manifesto Project

Crowd-sourced coding, e.g.

Ask random people on the internet to code texts into categories

Tends to rely on the “wisdom of crowds” hypothesis: aggregated judgments of non-
experts converge to judgments of experts at much lower cost

For the purposes of the running example, we are cheating a bit by assuming that any dish
whose title contains the word “curry” is, in fact, a curry.



Naive Bayes
Classification



Language Models
Probabilistic language models describe a story about how documents are generated
using probability

This data-generating process is based on a set of unknown parameters which we infer
based on the data

Once we have inferred values for the parameters, we can reverse the data-generating
process and calculate the probability that any given document was generated by a
particular language model

The Naive Bayes text classification model is one example of a generative language
model. In Naive Bayes:

a. Estimate separate language models for each category of interest

b. Calculate probability that each text was generated by each model

c. Assign the text to the category for which it has the highest probability



Language Models
The basis of any language model is a probability distribution over words in a
vocabulary.

A probability distribution over a discrete variable must have three properties

Each element must be greater than or equal to zero

Each element must be less than or equal to one

The sum of the elements must be 1



Language Models
Consider a 6 word vocabulary: “coriander”, “turmeric”, “garlic”, “sugar”, “flour”, “eggs”

When writing a curry recipe, you will

frequently use the words “coriander”, “turmeric”, and “garlic”

infrequently use the words “sugar”, “flour”, and “eggs”

When writing a cake recipe, you will

frequently use the words “sugar”, “flour”, and “eggs”

infrequently use the words “coriander”, “turmeric”, and “garlic”

We can represent these different “models” for language using a probability distribution
over the words in the vocabulary:

Model coriander turmeric garlic sugar flour eggs

0.4 0.25 0.20 0.08 0.04 0.03

0.02 0.01 0.01 0.26 0.4 0.3

μcurry

μcake



Language Models
Model coriander turmeric garlic sugar flour eggs

0.4 0.25 0.20 0.08 0.04 0.03

0.02 0.01 0.01 0.26 0.4 0.3

μcurry

μcake

Given these models, we can calculate the probability that a given set of word counts
(i.e. a document) would be drawn from each distribution

P( |μ) =Wi
!Mi

!∏J
j=1 Wi,j ∏

j=1

J
μWij

j

This is the multinomial distribution

 is the probability of observing word  under a given modelμj j
 is the number of times word  appears in document  (i.e. it is an element of a

dfm)
Wi,j j i

 is the total number of words in document Mi i



Language Models
Model coriander turmeric garlic sugar flour eggs

0.4 0.25 0.20 0.08 0.04 0.03

0.02 0.01 0.01 0.26 0.4 0.3

Imagine we have two documents represented by the following DFM

Document coriander turmeric garlic sugar flour eggs

6 2 1 1 0 0

1 0 0 4 2 3

Which language model is most likely to have produced each document?

μcurry

μcake

W1

W2



Naive Bayes
Naive Bayes is a model that classifies documents into categories on the basis of the
words they contain

is the posterior distribution – this tells us the probability that document is in category ,
given the words in the document and the prior probability of category

is the conditional probability or likelihood – this tells us the probability that we would
observe the words in if the document were from category

is the prior probability that the document is from category – this tells us the probability
of the category of the document, absent any information about the words it contains

is the unconditional probability of the words in document – this tells us the probability
that we would observe the words in across all categories



Naive Bayes
Generally, we will want to make comparisons of the probabilities between different
classes

e.g. Is

This means that we can drop the term and just focus on the likelihood and the prior
probabilities

where means “proportional to” (rather than “equal than” for )



Naive Bayes
To work out the whether a document should be labelled as belonging to a particular class,
we therefore need to work out:

the prior probability () that the document is from category

This is usually estimated by calculating the proportion of documents of category in
the training data

the conditional probability or likelihood () of the words in the document occuring in
category

We already know that we can calculate this probability from the multinomial
distribution!

Again, because we are only interested in the relative probabilities of different
classes, we can drop the multinomial coefficient

Question: How do we estimate ?



Naive Bayes Estimation
is the probability that word will occur in documents of category .

We can estimate these probabilities from our training data:

Example:

In the curry recipes our training data, we observe…

…77 instances of the word “turmeric” ()

…10586 total words ()

…and so

In the not-curry recipes our training data, we observe…

…148 instances of the word “turmeric” ()

…210805 total words ()

…and so

The word “turmeric” is about 10 times more common in curry recipes than other
recipes



Naive Bayes Estimation – Laplace
Smoothing

What happens when a given word doesn’t appear at all for one of the classes in our
training data?

Imagine that we never observe the word “duck” in the curry recipes in our training data

Then, in our test data, we observe the following sentence:

> "For this curry you will need to coat the duck legs with 1 tsp ground turmeric"

Because we multiply together all the individual word probabilities when we calculate
the probability of a sentence occurring in a category, we will get a probability of zero!

Solution: Add one to the counts for each word in each category

This solution is known as “add-one” or “Laplace” smoothing



Why is Naive Bayes “Naive”?
By treating documents as bags of words we are assuming:

Conditional independence of word counts

Knowing a document contains one word doesn’t tell us anything about the
probability of observing other words in that document

e.g. The fact that a recipe includes the word “turmeric” doesn’t make it any more or
less likely that it will also include the word “coriander”

Positional independence of word counts

The position of a word within a document doesn’t give us any information about the
category of that document

e.g. Whether the word “turmeric” appears early or late in the recipe has no effect on
the probability of it being a curry

While this is a very simple model of language which is “wrong”, it is nevertheless useful for
classification.



Naive Bayes Classification
The classification decision made by the Naive Bayes model is simple: we assign document
to the category, , for which it has the highest posterior probability:

where means “which category, , has the maximum posterior probability”.

Intuition:

Assign documents to categories when the probability of observing the words in that
document are high given the probability distribution for that category (i.e. when is
large)

Assign more documents to categories that contain more documents in the training data
(i.e. when is large)



Naive Bayes Application
nb_output <- textmodel_nb(x = recipe_dfm, 1
                         y = recipe_dfm$curry,2
                         prior = "docfreq")3
summary(nb_output)4

1
Call:2
textmodel_nb.dfm(x = recipe_dfm, y = recipe_dfm$curry, prior = "docfreq")3

4
Class Priors:5
(showing first 2 elements)6
    Curry Not Curry 7
   0.0309    0.9691 8

9
Estimated Feature Scores:10
              beef     boned    rolled     pint      red     wine  vinegar11
Curry     0.001378 0.0014925 0.0001148 0.001148 0.011481 0.001607 0.00137812
Not Curry 0.003304 0.0006107 0.0004031 0.003847 0.009619 0.007750 0.00515413
            sugar  allspice      bay  leaves     thyme peppercorns  crushed14
Curry     0.00620 0.0002296 0.002067 0.01378 0.0004592    0.003789 0.00907015
Not Curry 0.01872 0.0003420 0.002821 0.01063 0.0048734    0.001826 0.00541716
            english     dijon  mustard unsalted      room temperature      lard17
Curry     0.0002296 0.0001148 0.005166 0.001493 0.0001148   0.0001148 0.000114818
Not Curry 0.0007023 0.0009832 0.002803 0.004953 0.0005741   0.0005924 0.000415319
             plain    flour   white    water   chilled     icing  chicken20
Curry     0.004822 0.006085 0.00287 0.007003 0.0001148 0.0003444 0.00585521
Not Curry 0.008611 0.014871 0.01042 0.006693 0.0005863 0.0023573 0.00703522
              cut   pieces23
Curry     0.01297 0.00551124
Not Curry 0.01336 0.00378625



Naive Bayes Application
Recall that we are interested in the probability of observing word given class , i.e. 

What are these word probabilities for our curry data?

We can examine the probability of each word given each class using the coef() function
on the nb_train object.

head(coef(nb_output))1

              Curry    Not Curry
beef   0.0013777268 0.0033038975
boned  0.0014925373 0.0006107019
rolled 0.0001148106 0.0004030633
pint   0.0011481056 0.0038474222
red    0.0114810563 0.0096185556
wine   0.0016073479 0.0077498076



Naive Bayes Application



Naive Bayes Application
What are the class-conditional word
probabilities for “Aromatic blackeye bean
curry”?
          P(w|curry) P(w|not curry)
seeds          0.030          0.008
finely         0.023          0.021
coriander      0.021          0.005
peeled         0.018          0.013
garlic         0.017          0.014
ginger         0.015          0.005
cloves         0.015          0.008
leaves         0.014          0.011
cumin          0.014          0.002
chilli         0.013          0.006
onion          0.010          0.009
piece          0.010          0.002

What are the class-conditional word
probabilities for “Schichttorte”?
          P(w|curry) P(w|not curry)
large          0.010          0.010
sugar          0.006          0.019
flour          0.006          0.015
paste          0.006          0.001
plain          0.005          0.009
lemon          0.004          0.008
freerange      0.003          0.013
eggs           0.002          0.008
zest           0.002          0.005



Naive Bayes Application
Which recipes are predicted to have a high curry probability?

recipe_dfm$curry_nb_probability <- predict(nb_output, 1
                                           type = "probability")2

3
recipe_dfm$recipe_name[order(recipe_dfm$curry_nb_probability[,1], decreasing = T)[1:10]]4

 [1] "Bengali butternut squash with chickpeas"        
 [2] "Chickpea curry with green mango and pomegranate"
 [3] "Green coconut fish curry"                       
 [4] "Thai green prawn curry"                         
 [5] "Rogan josh"                                     
 [6] "Bengal coconut dal"                             
 [7] "Tom yum soup"                                   
 [8] "Thai-style duck red curry"                      
 [9] "Peppery hot cabbage salad"                      
[10] "Peppery hot cabbage salad"                      

Which recipes are predicted to have a low curry probability?
recipe_dfm$recipe_name[order(recipe_dfm$curry_nb_probability[,1], decreasing = F)[1:10]]1

 [1] "Sticky toffee apple pudding with calvados caramel sauce"
 [2] "Rich moist all-purpose fruit cake"                      
 [3] "Mini stollen "                                          
 [4] "Chocolate fruit cake"                                   
 [5] "Pheasant pithiviers"                                    
 [6] "Spiced poached pears with chocolate pudding"            
 [7] "Traditional Christmas pudding with brandy butter"       
 [8] "Intense chocolate cookies"                              
 [9] "Cookies and cream fudge brownies"                       
[10] "Bonfire night brioche"                                  



Was #TheStew really #TheCurry?
The purpose of training a classification model is to make out-of-sample predictions

Generally, we have a small hand-coded training dataset and then we predict for lots of
other documents

Here, we are only predicting for one out-of-sample observation

ingredients <- c("cup olive oil, plus more for serving garlic cloves, chopped large yellow onion, chopped (2-inch) piece ginger, finely chopped Kosher salt and black pepper teaspoons ground turmeric, plus more for serving teaspoon red-pepper flakes, plus more for serving (15-ounce) cans chickpeas, drained and rinsed (15-ounce) cans full-fat coconut milk cups vegetable or chicken stock bunch Swiss chard, kale or collard greens, stems removed, torn into bite-size pieces cup leaves, mint for serving Yogurt, for serving (optional) Toasted pita, lavash or other flatbread, for serving (optional)")1
2

dfm_stew <- tokens(ingredients) %>%3
            dfm() %>%4
            dfm_match(features = featnames(recipe_dfm))5

6
predict(nb_output, newdata = dfm_stew, type = "probability")7

          Curry  Not Curry
text1 0.9611718 0.03882815

Yes!



Advantages and Disadvantages of
Naive Bayes
Advantages

Fast

Takes seconds to compute, even for very large vocabularies/corpuses

Easy to apply

One line of code in quanteda

Can easily be extended to include…

… multiple categories

… different text representations (bigrams, tri-grams etc)



Advantages and Disadvantages of
Naive Bayes
Disadvantages

Independence assumption

Independence means NB is unable to account for interactions between words

e.g. When the word “eggs” appears with the word “sugar” that should indicate
something different from when “eggs” appears without the word “sugar”

Independence also means that NB is o#en overconfident

Each additional word counts as a new piece of information

In some contexts, the independence assumption can decrease predictive accuracy

Linear classifier

Other methods (e.g. SVM) allow the classification probabilities to change non-
linearly in the word counts

e.g. Perhaps seeing the word “eggs” once should have a smaller effect on the
probability that the recipe is a curry than seeing the word “eggs” five times



Validation



Naive Bayes Application
Before we train a model, we need to separate our data into a training set and a test set:

## Training and test set1
2

train <- sample(c(TRUE, FALSE), nrow(recipes), replace = TRUE, prob = c(.8, .2))3
test <- !train4

table(train)1

train
FALSE  TRUE 
 1877  7507 

table(test)1

test
FALSE  TRUE 
 7507  1877 

How many curry recipes are there in the training and test sets?
## Training and test set1

2
prop.table(table(recipes$curry[train]))3

     Curry  Not Curry 
0.03157053 0.96842947 

prop.table(table(recipes$curry[test]))1

     Curry  Not Curry 
0.02823655 0.97176345 



Naive Bayes Application
We then subset the recipe_dfm object into a training dfm and a test dfm:

## Naive Bayes1
2

recipe_dfm_train <- dfm_subset(recipe_dfm, train)3
recipe_dfm_test <- dfm_subset(recipe_dfm, test)4

We then train our Naive Bayes model on the training set:
nb_train <- textmodel_nb(x = recipe_dfm_train, 1
                         y = recipe_dfm_train$curry,2
                         prior = "docfreq")3

And finally, we predict the category of each recipe in the test set:
recipe_dfm_test$predicted_curry_nb <- predict(nb_train,1
                                                newdata = recipe_dfm_test,2
                                                type = "class")3



Naive Bayes Classification
Perfomance

confusion_nb <- table(predicted_classification = recipe_dfm_test$predicted_curry_nb,1
                      true_classification = recipe_dfm_test$curry)2

library(caret)1
2

confusionMatrix(confusion_nb, positive = "Curry")3

Confusion Matrix and Statistics1
2

                        true_classification3
predicted_classification Curry Not Curry4
               Curry        38       1015
               Not Curry    15      17236
                                          7
               Accuracy : 0.9382          8
                 95% CI : (0.9263, 0.9487)9
    No Information Rate : 0.9718          10
    P-Value [Acc > NIR] : 1               11
                                          12
                  Kappa : 0.3701          13
                                          14
 Mcnemar's Test P-Value : 2.973e-15       15
                                          16
            Sensitivity : 0.71698         17
            Specificity : 0.94463         18
         Pos Pred Value : 0.27338         19
         Neg Pred Value : 0.99137         20
             Prevalence : 0.02824         21
         Detection Rate : 0.02025         22
   Detection Prevalence : 0.07405         23
      Balanced Accuracy : 0.83080         24

Implication:

Relative to the dictionary
approach we are…

…doing a better job on
predicting true positives now
(our sensitivity is much higher)

…predicting too many curries
that are actually something else
(our specificity is a little lower)



Training-Set and Test-Set
Performance

The  and  accuracy can be very differenttest set training set

As a model becomes more flexible…

…the training set accuracy will almost always increase

…the test set accuracy will sometimes decrease

Imagine that we include a very large number of features in our dfm

All unigrams, all bi-grams, …, all 5-grams

Total number of features 300k features

How does the training/test set accuracy change as we increase the number of features
used to train the classifier?

http://localhost:7198/?print-pdf=
http://localhost:7198/?print-pdf=


Training-Set and Test-Set Accuracy



Overfitting and Test-Set Accuracy
Question: Why does the test-set accuracy
decrease when we add additional
features?

Answer: Because we are now overfitting
our data.

Overfitting occurs when we find
relationships between words (or n-
grams) and curries in our training data
that do not generalise to our test data

In this example, there are some n-gram
phrases that appear frequently in the
curry recipes in our training set but
which never appear in our test-set curry
recipes

Feature Training

mustard_seeds_tsp 18

tsp_black_mustard 15

tsp_black_mustard_seeds 15

leaves_and_stalks 20

black_mustard_seeds_tsp 10

coriander_leaves_and 14

cumin_seeds_tsp_black 7

coriander_leaves_and_stalks 13

large_garlic_cloves 9

chopped_garlic_cloves_peeled_and 15



Test-Set Validation for Feature
Selection

We can use the test-set performance statistics to select between model specifications

We will compare the accuracy, sensitivity and specificity for the following models:

Our “original” model (unigrams, no stopwords, trimmed)

A “raw” model (unigrams, nothing removed)

A “no stopwords” model (unigrams, stopwords removed)

A “trimmed” model (unigrams, trimmed)

An “n-gram” model (unigrams, bigrams, trigrams)

An “n-gram, trimmed” model (unigrams, bigrams, trigrams, words occuring fewer
than 10 times discarded)

The “best” model is the one which has the highest classification scores



Test-Set Validation for Feature
Selection

Test-set validation

Model Accuracy Sensitivity Specificity N features

Original 0.94 0.78 0.95 902

Raw 0.96 0.65 0.97 4214

No stop words 0.96 0.66 0.97 4126

Trimmed 0.94 0.79 0.95 1339

N-gram 0.98 0.51 1 152215

N-gram, trimmed 0.94 0.83 0.94 6072

The “n-gram” model has the highest accuracy, but has very low sensitivity

The “n-gram, trimmed” model outperforms all other models in sensitivity



Cross-Validation
To calculate the test-set accuracy we randomly allocated observations to the test and
training sets

If we repeat this process with a new randomization, we will get slightly different test-set
performance scores

Rerandomization 3:

Test-set validation

Model Accuracy Sensitivity Specificity N features

Original 0.94 0.78 0.95 902

Raw 0.96 0.64 0.97 4214

No stop words 0.96 0.69 0.97 4126

Trimmed 0.94 0.78 0.95 1339

N-gram 0.98 0.51 1 152215

N-gram, trimmed 0.94 0.83 0.94 6072

The simple validation approach suffers from two weaknesses:



K-fold Cross-Validation
Cross-validation is an alternative to a
simple train-test split

This approach involves randomly
dividing the set of observations into
groups, or folds, of approximately equal
size

Typical choices are or

For each of the folds we do the following

1. Train the Naive Bayes model on all
observations not included in the fold

2. Generate predictions for the
observations in the fold

3. Calculate the accuracy etc of the
predictions for the observations in
the held-out fold

We then calculate the performance

100

http://localhost:7198/?print-pdf=
http://localhost:7198/?print-pdf=
http://localhost:7198/?print-pdf=


K-fold Cross-Validation Application
get_performance_scores <- function(held_out){1
  2
  # Set up train and test sets for this fold3
  recipe_dfm_train <- dfm_subset(recipe_dfm, !held_out)4
  recipe_dfm_test <- dfm_subset(recipe_dfm, held_out)5
  6
  # Train model on everything except held-out fold7
  nb_train <- textmodel_nb(x = recipe_dfm_train, 8
                         y = recipe_dfm_train$curry,9
                         prior = "docfreq")10
  11
  # Predict for held-out fold12
  recipe_dfm_test$predicted_curry <- predict(nb_train, 13
                                             newdata = recipe_dfm_test, 14
                                             type = "class")15
  16
  # Calculate accuracy, specificity, sensitivity17
  confusion_nb <- table(predicted_classification = recipe_dfm_test$predicted_curry,18
                        true_classification = recipe_dfm_test$curry)19
  20
  confusion_nb_statistics <- confusionMatrix(confusion_nb, positive = "Curry")21
  22
  accuracy <- confusion_nb_statistics$overall[1]23
  sensitivity <- confusion_nb_statistics$byClass[1]24
  specificity <- confusion_nb_statistics$byClass[2]25
  26
  return(data.frame(accuracy, sensitivity, specificity))27

101



K-fold Cross-Validation Application
K <- 51
folds <- sample(1:K, nrow(recipe_dfm), replace = T)2
get_performance_scores(folds == 1)3

          accuracy sensitivity specificity
Accuracy 0.9418182    0.754386   0.9475375

all_folds <- lapply(1:5, function(k) get_performance_scores(folds == k))1
all_folds2

[[1]]
          accuracy sensitivity specificity
Accuracy 0.9418182    0.754386   0.9475375

[[2]]
          accuracy sensitivity specificity
Accuracy 0.9389356   0.6923077   0.9463358

[[3]]
         accuracy sensitivity specificity
Accuracy 0.935911   0.7666667   0.9414661

[[4]]
          accuracy sensitivity specificity
Accuracy 0.9420829   0.7704918   0.9478309

[[5]]
          accuracy sensitivity specificity
Accuracy 0.9380252   0.7166667   0.9452278

colMeans(bind_rows(all_folds))1

   accuracy sensitivity specificity 
  0.9393546   0.7401038   0.9456796 

102



Cross-Validation for Model Selection
103



Extensions
Naive Bayes is only one supervised learning text-classification method

Regularized Logistic Regression

Directly models the probability that each document is in class using logistic
regression

Regularization required to prevent overfitting data

textmodel_lr in quanteda
Support Vector Machines

SVMs draw a hyperplane through the multidimensional word space that best
separates documents into different classes

Can accomodate non-linear boundaries between classes

textmodel_svm() in quanteda
“Tree-based” Classification Methods

Tree-based methods separate classes by segmenting the predictors (word counts)
into a number of distinct regions

The modal outcome for observations that fall within a given region becomes the

104



Use Cases of Supervised Learning
105



Conclusion

107



Summing Up
1. Using a vector-based representation allows us to calculate the similarity between

documents

2. Supervised learning for text data allows us to learn the association between words and
particular outcome categories

3. The Naive Bayes model is a simple model that is fast to implement and which, despite
some strong assumptions, tends to provide good classification results

108


